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Navigating Pubertal Goldilocks: The Optimal Pace for
Hierarchical Brain Organization

Hanna Szakács, Murat Can Mutlu, Giulio Balestrieri, Ferenc Gombos, Jochen Braun,
Morten L. Kringelbach, Gustavo Deco, and Ilona Kovács*

Adolescence is a timed process with an onset, tempo, and duration.
Nevertheless, the temporal dimension, especially the pace of maturation,
remains an insufficiently studied aspect of developmental progression. The
primary objective is to estimate the precise influence of pubertal maturational
tempo on the configuration of associative brain regions. To this end, the
connection between maturational stages and the level of hierarchical
organization of large-scale brain networks in 12-13-year-old females is
analyzed. Skeletal maturity is used as a proxy for pubertal progress. The
degree of maturity is defined by the difference between bone age and
chronological age. To assess the level of hierarchical organization in the brain,
the temporal dynamic of closed eye resting state high-density
electroencephalography (EEG) in the alpha frequency range is analyzed.
Different levels of hierarchical order are captured by the measured asymmetry
in the directionality of information flow between different regions. The
calculated EEG-based entropy production of participant groups is then
compared with accelerated, average, and decelerated maturity. Results
indicate that an average maturational trajectory optimally aligns with cerebral
hierarchical order, and both accelerated and decelerated timelines result in
diminished cortical organization. This suggests that a “Goldilocks rule” of
brain development is favoring a particular maturational tempo.
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1. Introduction

Similar to early childhood development,
adolescence is a time-bound event with an
onset, tempo, and duration. While the in-
teraction between genetic and environmen-
tal factors is established as a fundamen-
tal contributor to diversities in adult be-
havioral consequences, the temporal aspect,
specifically, the speed of maturation, re-
mains an insufficiently explored feature of
developmental progression.[1,2] In the cur-
rent study, we focus on the alterations of hi-
erarchical brain organization, related to dif-
ferent timings of pubertal maturation.

Adolescent cerebral maturation in-
volves intricate sequences of neuro-
development,[3,4] interwoven with alter-
ations by age and stress.[5–7] Normative
trajectories delineating volumetric[8] and
synaptic density[9] shifts underscore the
ongoing developmental dynamics of the
adolescent brain. It is important to acknowl-
edge, however, that the comprehensive vol-
umetric transformations and mean synap-
tic density reflect the cumulative outcome
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of anatomical reconfiguration within the human brain, where the
different components undergo heterochronous maturation.[10,11]

Increasingly earlier onset of puberty referred to as worldwide sec-
ular trends,[12–14] or delayed onset due to, e.g., malnutrition or
eating disorders[15,16] might have significant consequences on de-
velopmental trajectories, impacting a wide range of physiological
and psychological processes. For instance, puberty-associated re-
ductions in cortical thickness[17] or synaptic density[18] may mani-
fest prematurely or belatedly, deterring the adaptability of regions
maturing at later stages to the atypical developmental milieu. Pre-
mature or postponed puberty can also generate challenges in be-
havioral adjustment, potentially leading to social isolation and
heightened anxiety, particularly in the absence of adequate cop-
ing mechanisms,[19] thereby emphasizing the critical role of ado-
lescence in mental health.[8,20] Consequently, it is essential to in-
vestigate the impact of pubertal timing on the developing brain.

Uncertainty around the impact of atypical pubertal timelines
arises from ineffective maturity measures and difficulty dissoci-
ating chronological age from pubertal maturity.[21,17,22–24] While
puberty onset and its potential impact on developmental trajec-
tories have long been a topic of interest, with significant individ-
ual variability suspected,[23,25,26] a precise assessment of the rela-
tionship between maturity and brain development remains no-
ticeably absent from the literature, which is due to the lack of a
reliable method to assess maturity levels. The Tanner Scale,[27–29]

considered as the benchmark, relies on subjective evaluations of
physical attributes such as breast and testicle size, rendering it
susceptible to evaluator subjectivity. This scale originates from
a post-war longitudinal study carried out within an orphanage
from 1949 to 1971, thus failing to account for contemporary nu-
tritional conditions and secular trends in growth.[13,28,30–32] Self-
and parent-report versions of this method have also been deemed
unreliable.[28,29,33]

Recently, we have introduced ultrasonic bone age as a promis-
ing alternative for maturity assessments in human developmen-
tal research,[34] with evidence for selective maturity-dependent ef-
fects in cognitive,[34,35] motor,[36] and emotional development.[37]

Operating without harmful radiation, this technology gauges
acoustic conductivity at hand and wrist growth zones to estimate
bone age, demonstrating robust correlation with pubertal hor-
mone levels,[28,33,38,39] X-ray estimations,[40] and displaying high
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reliability.[40] This method overcomes traditional pubertal stag-
ing accuracy issues by providing an objective, continuous mea-
sure with unprecedented accuracy. In the current study, skele-
tal maturity serves as a proxy for individual pubertal maturity
status. Addressing the impact of pubertal timing on brain de-
velopment, the degree of maturity of each participant is calcu-
lated based on the difference between their bone age (BA) and
chronological age (CA). It is widely acknowledged that the tim-
ing of puberty can differ significantly among individuals and fol-
lows a normal distribution,[41–44] therefore, to allow for statistical
comparison across groups with different maturity levels, in our
cross-sectional study, we selected an equal number of decelerated
(BA < CA), average (BA = CA) and accelerated (BA > CA) matu-
rity participants after screening them for bone age (Figure 1a, and
please also consult Section Participants in Experimental Section
for details). This approach not only disentangles chronological
age from pubertal maturity (Figure 1b), but also provides insights
into how adolescents with varying maturity levels navigate puber-
tal goldilocks.

Our primary objective is to investigate the precise influence of
pubertal maturation on the configuration of associative brain re-
gions, which manifest the most substantial developmental shifts
during adolescence.[10,45,46] For this purpose, we assess resting-
state brain activity and extract the degree of hierarchical arrange-
ment among participant groups exhibiting diverse levels of phys-
ical maturation.

Recent progress in neuroimaging has enabled the creation
of normative brain-growth charts,[8,47] similar to those applied
for anthropometric attributes like height and weight. Despite
their reliance solely on chronological age and their predominant
cross-sectional nature, these investigations reveal the spatiotem-
poral dynamics of developmental plasticity and have even iden-
tified a sensorimotor-to-associative sequence of refinement.[10,11]

The latter findings align with the progress of phylogenetic brain
development from less variable unimodal areas toward hetero-
modal association cortices.[48–50] It is important to recognize
that the most recently evolved associative networks within the
brain might be particularly vulnerable to diverse pubertal time-
lines, given their ontogenetic maturation coincides more closely
with the adolescent phase. Irregular timelines could also re-
late more to alterations in the finely tuned intrinsic activity of
these networks, as opposed to extensive anatomical reconfigura-
tions. While functional Magnetic Resonance Imaging (fMRI) has
proven useful in assessing intrinsic resting-state activity, it is sen-
sitive to neural, vascular, and respiratory influences. Therefore,
direct measures of neural activity might offer better options for
investigating this intrinsic behavior. Resting-state EEG provides
direct measures of intrinsic cortical activity, allowing for the de-
tection of changes in oscillatory activity and functional connectiv-
ity that are not captured by fMRI. In this study, we rely on resting-
state EEG in the alpha frequency range (see Section Resting State
Data Recording and Section Data Analysis in Experimental Sec-
tion) to compare the progression of hierarchical brain organiza-
tion across groups with early, on-time, and late maturing groups
as defined by the difference between their bone age and chrono-
logical age.

To reveal any relationships between pubertal pace and the ad-
vancement of brain organization, we analyze how skeletal age-
based maturity levels link to high-level features of resting-state
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Figure 1. Participant grouping by adolescent age and maturity. a) The black curve illustrates the normal distribution of diverse maturity levels in a
standard population, where maturity is represented along the horizontal axis as the discrepancy between biological age (BA) and chronological age
(CA). Positive differences indicate accelerated, while negative differences indicate decelerated maturity. In the present study, to explore the influence
of varying maturity levels, we initially assessed bone age using an ultrasonic device to estimate the biological age of participants. We then selected an
approximately equal number of participants with decelerated, average, and accelerated maturity levels. b) Dissociation of biological and chronological
age is achieved through the assignment of participants into one-year-wide hexagonal bins which ensures the absence of overlap between maturity groups.
The data were then analyzed through various grouping approaches: c) The effect of chronological age is analyzed by averaging across different maturity
groups within specific age groups; d) The effect of maturity is analyzed by averaging across age groups within distinct maturity groups; e) By comparing
data at the bin-level, the interplay between age and maturity effects is revealed.

EEG-dynamics. Specifically, we introduce “entropy production”
to capture the degree of functional hierarchical organization of
the brain. In thermodynamics and systems biology, the asym-
metry and directionality of flow in the state space of the com-
ponents of a living system is known as the “breaking of the de-
tailed balance” and gives rise to non-equilibrium states which
can be captured by the level of non-reversibility in time.[51,52]

In other words, different levels of hierarchical organization al-
low the orchestration of the whole-brain dynamics accordingly
in different ways. Hierarchy is built up by the underlying asym-
metry in the directionality of information flow between different
regions. Thermodynamics establishes a direct link between hier-
archy, non-equilibrium, and time irreversibility. This comes from
the fundamental idea of the second law of thermodynamics, ex-
plicitly stating that a system will go from order to disorder over
time. We capture these different levels of organization and non-
equilibrium through the level of irreversibility, i.e., through the
“arrow of time.”[51,53]

Asymmetric flow can be observed in state spaces at vari-
ous scales, from the molecular[54] to the macroscopic brain
dynamics.[52] In general, asymmetric flow reflects a degree of
non-reversibility in the dynamics of the system. In the case of

the brain, such non-reversibility is thought to reflect the hi-
erarchical organization of brain activity.[51,55] Entropy produc-
tion is a direct measure of non-reversibility and indirectly cap-
tures the functional hierarchy expressed by brain activity[51,53,56]

(see Section Data analysis in Experimental Section). The valid-
ity of this approach using combined resting-state EEG – fMRI
recordings has been recently confirmed on adult human pa-
tients with a neurodegenerative disorder.[57] The study demon-
strated that compromised brain networks show a breakdown of
temporal irreversibility which is accompanied by cognitive de-
cline. An out-of-sample validation procedure additionally con-
firms these results.[57] The fact that broken detailed balance can
characterize large-scale brain dynamics as it is related to func-
tion has been shown in a study discovering entropy produc-
tion signatures of different levels of conscious awareness.[53]

In terms of anatomical considerations, recent studies con-
verge on finding increased entropy production in the default
mode network (DMN) of the brain being active during resting
states.[53,55,57]

The purpose of our study is to investigate the relationship be-
tween entropy production, as a proxy of hierarchical brain activity,
and the level of physical maturation. We hypothesize that during
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the development and maturation of the brain, there is a surge
in hierarchical organization which will be reflected by the mea-
sured level of entropy production within chronological and mat-
urational age groups.

2. Results

As explained in Figure 1b, we dissociated biological and chrono-
logical age through the assignment of participants into one-year-
wide hexagonal bins to ensure the absence of overlap between
maturity groups with approximately equal numbers of partici-
pants. We then analyzed the data through various grouping ap-
proaches illustrated in Figure 1c,d, allowing for the analysis of
chronological age and maturity levels independently. Results are
discussed according to those groupings. We have obtained and
analyzed closed-eye resting state high-density EEG recordings
in the alpha frequency range (8–12 Hz) in 61 adolescent, and
26 emerging adult female participants (see Figure 1 and Exper-
imental Section/Participants). To measure the level of hierar-
chical brain activity in resting-state EEG recordings, we parsed
the recorded neural data into 12 topographically distinct, phase-
based activity patterns, referred to as “brain states” (see Figure 6),
utilizing a modified k-means clustering algorithm.[58] Each brain
state captures patterns where two major electrode sets record con-
gruent signals, but these sets are in opposition to one another.
After extracting the brain state patterns, we studied the sequence
in which these brain states occurred, specifically focusing on the
asymmetrical nature of their transitions. A sequence of consec-
utive brain states is illustrated in Figure 7a as a representative
example in Section Data analysis in Experimental Section, while
Figure 7b presents a table that counts the observed occurrences
of each transition within this example, highlighting their asym-
metric quality.

2.1. Chronological Age-Related Entropy Production

To evaluate the effect of chronological age on entropy production,
we averaged across maturity groups within a 12-year-old (N = 31,
mean age = 12.48 y, SD = 0.27 y) and a 13-year-old (N = 30, mean
age = 13.58 y, SD = 0.29 y) group. In order to have normative data
from young adults, we also included 22-year-old participants (N
= 26, mean age = 21.69 y, SD = 0.64 y). For further details see
Figure 1c, Figure 2c, and Section Participants in Experimental
Section. Importantly, adult data should only be compared to age-
averaged results of adolescents as the adult cohort has not been
selected with respect to maturity. Given that bone formation is
completed by adulthood, bone age assessment is irrelevant in
adults. Therefore, adult data were included in the statistical anal-
ysis only where the basis of the analysis is chronological age, ir-
respective of maturity.

Figures 2a and 3b provide a detailed look at brain state dynam-
ics within each age-group. Logarithmic irreversibility transition
matrices in Figure 2a illustrate a contribution to entropy produc-
tion of brain state transitions in age groups, derived from the
log ratio of the forward and reverse transition probabilities, es-
timated from transition counts. Matrices were generated by av-
eraging individual matrices within each age group, followed by

normalization of values to a −1 to +1 range (using the largest ab-
solute value of the global extremum), indicated by the color scale.
Each matrix holds 12× 12 values, with the starting brain states on
the horizontal and the subsequent states in the brain state switch-
ing on the vertical axis. Log ratios of the forward and reverse
transition probabilities are non-symmetric. Positive and nega-
tive values indicate a preference for forward and reverse transi-
tions, respectively. The relative similarity in the variability in hue
and intensity indicates comparable entropy production between
age groups, with a slight indication of age-related improvement.
Graphs in Figure 2b show the total entropy production contri-
butions of brain state pairs, computed by summing the log ra-
tio values of forward and reverse transition probabilities within
each pair, creating symmetric matrices. Graph values are gener-
ated by averaging the individual symmetric matrices within age
groups, and then normalizing them between 0 and 1. The nodes
represent the 12 brain states, with the most dominant state (high-
est percentage of total activity) positioned at the 12 o’clock posi-
tion, and subsequent states are arranged clockwise in order of de-
scending dominance. The edges indicate pairwise contributions
to entropy production, where increasing thickness and darkness
represent greater contribution. The slight increase in line thick-
ness and darkness across age-groups may indicate a subtle rise
in contributions to entropy production with age.

Group averages and variances of entropy production were
computed via inverse-variance weighting to minimize the bias-
ing effect on the weighted arithmetic mean introduced by vari-
ance. Ninety-five percent confidence intervals of group-level en-
tropy production were also calculated using the weighted group
average. Weighted group averages revealed a tendency to increase
entropy production with age, as it is demonstrated in Figure 2d.
Specifically, the 12-year-old group exhibited an average mean en-
tropy production of 0.02300 bit (95% CI: 0.02064–0.02537), while
the average mean entropy production of the 13-year-old group
was 0.02415 bit (95% CI: 0.02166–0.02663), and the average
mean entropy production of the 22-year-old group was 0.02538
bit (95% CI: 0.02271–0.02805). To determine whether the group
differences are statistically significant, we utilized two-sample z-
tests to compare the group averages (see Section Statistics in Ex-
perimental Section for further details). While a slight increase in
groupwise average entropy production with chronological age is
observed, pairwise comparison of group averages was not statis-
tically significant (p > 0.05 in each comparison). Hedges’ g effect
size estimates revealed small effect sizes in all cases: between the
12-year-old and 13-year-old (g = 0.17), and between 13-year-old
and 22-year-old (g = 0.18) groups, and in the comparison of the
12-year-old and 22-year-old group (g = 0.35).

Our statistical results indicate that, while there is a slight in-
crease in entropy production with increasing chronological age,
this variable independently does not have a substantial impact on
entropy production, further warranting the inspection of matu-
rity in adolescence.

2.2. Maturity-Related Entropy Production

To analyze the relationship between maturity and group-
level average entropy production, we sorted adolescent par-
ticipants according to their level of maturity, irrespective of
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Figure 2. Chronological age-related entropy production. a) Logarithmic irreversibility transition matrices illustrate two distinct, non-symmetric values
in each brain state pair, derived from the log ratio of the forward and reverse transition probabilities. The matrices inform about the preference for
directionality in brain state switching. The extent of deviation from 0 reflects the strength of directional preference (forward transitions in red, backward
transitions in blue), indicating the level of irreversibility and hierarchical organization in the brain. The relative similarity in the variability in hue and
intensity indicates comparable entropy production between age groups. b) Graphs represent the cumulative contribution to entropy production of both
forward and reverse transitions and reveal the level of irreversibility in the dynamics of each brain state pair within age groups. Nodes represent the 12
brain states, and edges indicate pairwise contributions to entropy production, where increasing thickness and darkness represent greater contribution
and, therefore larger irreversibility. There seems to be a subtle rise in contributions to entropy production with age. c) The effect of chronological age is
analyzed by averaging across different maturity groups within specific age groups. d) Bar plots illustrate the average entropy production and respective
95% confidence interval for each age group calculated via inverse-variance weighting. Differences among groups were statistically assessed using two-
sample z-tests, accompanied by Hedges’ g effect size calculations, yielding no statistically significant difference among the age groups in pairwise
comparisons (p > 0.05) and small effect sizes in all comparisons.

chronological age, forming three distinct groups: decelerated
maturity (CA-1.5≤BA<CA-0.5; N = 21, mean age = 12.98y, SD
= 0.60y, mean BA-CA = −0.92, SD = 0.24), average matu-
rity (CA-0.5≤BA≤CA+0.5; N = 21, mean age = 12.97y, SD =
0.60y, mean BA-CA = 0.03, SD = 0.29), and accelerated matu-

rity (CA+1.5≥BA>CA+0.5; N = 19, mean age = 13.12y, SD =
0.68y, mean BA-CA = 0.88, SD = 0.31). Participant groups are
illustrated both in Figures 1d and 3c.

Figure 3a,b offers detailed insight into brain state dynam-
ics within each maturity group. As it is described above, with
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Figure 3. Maturity-related entropy production. a) Logarithmic irreversibility transition matrices illustrate two distinct, non-symmetric values in each
brain state pair, derived from the log ratio of the forward and reverse transition probabilities. The matrices inform about the preference for directionality
in brain state switching. The extent of deviation from 0 reflects the strength of directional preference (forward transitions in red, backward transitions in
blue), indicating the level of irreversibility and hierarchical organization in the brain. The larger hue and intensity variation in the matrix of the average
maturity group indicates higher entropy production relative to the decelerated and accelerated groups. b) Graphs represent the cumulative contribution to
entropy production of both forward and reverse transitions and reveal the level of irreversibility in the dynamics of each brain state pair within maturity
groups. Nodes represent the 12 brain states, edges indicate pairwise contributions to entropy production, where increasing thickness and darkness
represent greater contribution and, therefore larger irreversibility. Graphs indicate higher entropy production in the average maturity group, apparent in
the thicker and darker lines. c) The effect of maturity is analyzed by averaging across age groups within distinct maturity groups. d) Bar plots illustrate the
average entropy production and respective 95% confidence interval for each maturity group, calculated via inverse-variance weighting. Using two-sample
z-tests, we compared the average group to both decelerated (p = 0.0028) and accelerated (p = 0.0082) groups, observing significant differences in each
comparison with large effect sizes (Hedges’ g).

respect to Figure 2a, logarithmic irreversibility transition ma-
trices in Figure 3a illustrate a contribution to entropy produc-
tion of brain state transitions, in this case within decelerated,
average, and accelerated maturity groups among adolescent par-
ticipants. The larger hue and intensity variation in the matrix

of the average maturity group indicates higher entropy produc-
tion relative to the decelerated and accelerated groups. Graphs in
Figure 3b represent the total contribution of both forward and
reverse transitions to entropy production (see the description re-
lated to Figure 2b above), indicating higher entropy production
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in the average maturity group, apparent in the thicker and darker
edges of the graph compared to that of the decelerated and accel-
erated groups.

Using inverse-variance weighting, we calculated the group-
level average and variance of entropy production to minimize
the distorting effect of variance and determined the 95% con-
fidence intervals based on the weighted group average. The
inverse-variance weighted group average and confidence inter-
val of the decelerated maturity (mean = 0.02146 bit, 95% CI:
0.01866–0.02426), average maturity (mean = 0.02794 bit, 95%
CI: 0.02475–0.03113), and accelerated maturity (mean = 0.02208
bit, 95% CI: 0.01913–0.02503) groups are illustrated in Figure 3d.
It is clear that the average maturity group expresses higher av-
erage entropy production than both accelerated and decelerated
maturity groups. We utilized two-sample z-tests to determine the
statistical significance of the apparent differences, reported with
Hedges’ g effect size tests. Results showed that the average matu-
rity group expresses significantly higher Groupwise average en-
tropy production than both accelerated (p = 0.0082, g = 0.83) and
decelerated (p = 0.0028, g = 0.92) maturity groups. Effect sizes
were large in both pairwise tests.

The average maturity group consistently expressed signifi-
cantly higher (p < 0.05) average entropy production than both
decelerated and accelerated groups with additional clustering ap-
proaches, specifically, working with 6, 8, and 10 brain states and
12 brain states that are specific to each unique group; see Section
Extended Analyses under Supporting Information for further de-
tails.

Our findings show that maturity significantly influences en-
tropy production, irrespective of chronological age, with the
group-level entropy production being significantly higher in the
average maturity group.

2.3. Chronological Age and Maturity-Related Entropy Production

To study the interplaying effect of chronological age and maturity,
we divided adolescents into two age brackets, namely 12-year-olds
(N = 31, mean age = 12.48 y, SD = 0.27 y) and 13-year-olds (N =
30, mean age = 13.58 y, SD = 0.29 y), and within these brack-
ets, we further assorted participants into three distinct maturity
groups, forming six groups, referred to as bins, in total.

In the 12-year-old group, we identified three maturity sub-
groups: decelerated maturity (CA-1.5≤BA<CA-0.5; N = 10, mean
age= 12.41 y, SD= 0.26 y, mean BA-CA=−0.86, SD= 0.21); aver-
age maturity (CA-0.5≤BA≤CA+0.5; N = 11, mean age = 12.48y,
SD = 0.28y, mean BA-CA = 0.04, SD = 0.31); and accelerated
maturity (CA+1.5≥BA>CA+0.5; N = 10, mean age = 12.54 y, SD
= 0.27 y, mean BA-CA = 0.91, SD = 0.34). Similarly, in the 13-
year-old group, we established three maturity subgroups: decel-
erated maturity (CA-1.5≤BA<CA-0.5; N = 11, mean age = 13.49
y, SD = 0.24 y, mean BA-CA = −0.97, SD = 0.27); average ma-
turity (CA-0.5≤BA≤CA+0.5; N = 10, mean age = 13.52 y, SD =
0.31 y, mean BA-CA = 0.03, SD = 0.28); and accelerated maturity
(CA+1.5≥BA>CA+0.5; N = 9, mean age = 13.76 y, SD = 0.26 y,
mean BA-CA = 0.85, SD = 0.28). Participant bins are illustrated
both in Figures 1e and 4c

Figure 4a,b offers detailed insight into brain state dynamics
within each bin. As described above, with respect to Figure 2a,

logarithmic irreversibility transition matrices in Figure 4a illus-
trate a contribution to entropy production of brain state transi-
tions, in this case within decelerated, average, and accelerated
maturity groups within age groups. In both age brackets, the
larger hue and intensity variation in the matrix of the average ma-
turity group indicates higher entropy production relative to the
decelerated and accelerated groups. Graphs in Figure 4b repre-
sent the total contribution of both forward and reverse transitions
to entropy production (see the description related to Figure 2b
above), indicating higher entropy production in the average ma-
turity group in both age groups, apparent in the thicker and
darker edges of the graph compared to that of the decelerated
and accelerated groups.

We utilized inverse-variance weighting to calculate group av-
erages and variances of entropy production, minimizing the bi-
asing effect that variance introduces to the weighted arithmetic
mean. Additionally, we determined the 95% confidence inter-
vals for group-level entropy production based on the weighted
group average. As it is suggested in Figure 4d, the average ma-
turity group expresses higher average entropy production at the
group-level than decelerated and accelerated groups in the same
chronological age category. We performed two-sample z-tests to
determine the statistical significance of differences. Two-sample
z-tests, accompanied by Hedges’ g effect size estimations, con-
firmed statistically significant differences among the 12-year-old
maturity bins (see Figure 4d); we compared the average entropy
production of the average maturity (mean = 0.02823 bit, 95%
CI: 0.02374-0.03271) bin to both decelerated (mean = 0.02032
bit, 95% CI: 0.01633-0.02431; p = 0.0098, g = 1.120) and acceler-
ated (mean = 0.02145 bit, 95% CI: 0.01750-0.02540; p = 0.0261, g
= 0.963) bins, revealing significant differences and large effect
sizes in these comparisons. Performing two-sample z-tests on
the maturity bins of the 13-year-olds did not yield a significant
result (p > 0.05 in all comparisons). Effect size measurements
revealed a medium effect size (g = 0.61) between the average ma-
turity (mean entropy production = 0.02728 bit, 95% CI: 0.02277-
0.03179) and decelerated (mean entropy production = 0.02299
bit, 95% CI: 0.01899-0.02700) bins, and large effect size in the
comparison of average versus accelerated (mean entropy produc-
tion = 0.02257 bit, 95% CI: 0.01813-0.02701; g = 0.67) bins.

Our results show that maturity strongly influences entropy
production among 12-year-old participants. While we did not find
significant differences between the maturity groups in the 13-
year-old age bracket, the higher group-level entropy production
in the average maturity group is still present in the logarithmic
irreversibility transition matrices (Figure 4a), in the graphs of
Figure 4b, and in the effect size calculations, indicating a per-
sistent pattern of increased entropy production associated with
average maturity.

3. Discussion

A novel question was addressed regarding the role of adoles-
cent maturation in brain development. While individual differ-
ences in maturity among teenagers are well-established, it has
been unclear whether there is a difference in brain develop-
ment between groups of adolescents with diverse maturity lev-
els. The introduction of skeletal age into research now allows
for conclusive answers to this question in a field obscured by
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methodology issues around maturity assessments. Our results
suggest that an average maturational trajectory might be optimal
in terms of hierarchical brain organization. The significance of
this study stems from the possibility that developmental plastic-
ity may not fully compensate for accelerated or decelerated time-
lines, and a heightened risk of behavioral problems and psychi-
atric disorders may arise from such alterations.

To address how well adolescents with different maturational
paces can navigate pubertal goldilocks, we relied on skeletal age
as a proxy for pubertal progress and resting-state EEG-derived en-
tropy production as a gauge of hierarchical brain organization.
As illustrated in Figure 1, we employed the strategy of selecting
an equal number of participants with accelerated, average, and
decelerated maturity levels. We have also completed our sam-
ple with a group of emerging adult participants who were not
selected by maturity levels since bone age assessments are not
informative at this age. The dissociation between biological age
and chronological age illustrated in Figure 1b allowed us to inde-
pendently analyze the impact of age and maturity on the extent
of resting-state EEG-derived entropy production.

First, we analyzed the relationship between chronological age
and entropy production by averaging across the three matu-
rity groups within the 12 and 13-year-old participant groups
(Figures 1c and 2c) and comparing them to the emerging adult
group. Despite a noticeable increasing trend in entropy produc-
tion with age (Figure 2d), chronological age in itself did not have a
statistically significant effect on entropy production. The similar
logarithmic irreversibility transition matrices of the age-groups
(Figure 2a), and the relatively similar dispersion of entropy pro-
duction among brain state pairs (Figure 2b) support the statistical
results. These findings suggest that the level of hierarchy in the
adolescent brain may not be meaningfully influenced by chrono-
logical age alone. It is important to note that we lack information
about the adolescent maturational trajectories of emerging adult
participants, while adolescents have been screened and selected
for the maturity groups in approximately equal numbers. There-
fore, the distributions of individuals with different maturity lev-
els might be different between emerging adults and adolescents
(Figure 1a), and their direct comparison should be approached
with caution.

To investigate the influence of maturity on entropy production,
we categorized adolescent participants into three distinct groups
based on their level of maturity (decelerated, average, and acceler-
ated maturity groups in Figures 1d and 3c.). Statistical analysis of
group averages (Figure 3d) revealed significantly higher entropy
production in the average maturity group with large effect sizes,

pointing to a considerably higher level of hierarchical organiza-
tion when chronological age and bone age align. A closer look
at the logarithmic irreversibility transition matrices (Figure 3a)
illustrating the strength of directional preference in switching
among the 12 states provides further insight into the role of ma-
turity in hierarchical organization. The average maturity group
has a relatively higher number of brain state pairs among which
a strong directionality is established. The contribution of brain
state pairs also reflects an elevated level of hierarchy in the av-
erage maturity group (Figure 3b). The dynamics between brain
states underlying the entropy production levels in each group in-
dicate well-established causal interactions, and hierarchical brain
organization in the average maturity group, while these relation-
ships seem relatively less dense in the decelerated and acceler-
ated groups. These findings indicate that physical maturity is in-
herently linked to the shaping of irreversible, causal interactions
within the cortex[51] during adolescence. Furthermore, it suggests
that the optimal maturational pace for fostering these relation-
ships is one in which chronological and biological age are closely
matched.

To see whether the maturity-related effect is stable across
different chronological ages, we compared the three maturity
groups within the 12- and 13-year-old age groups (Figures 1d
and 4c). The analysis revealed that the average maturity group
displays significantly higher entropy production compared to
both the decelerated and accelerated maturity groups among the
12-year-olds (Figure 4d). While this tendency is still apparent in
the 13-year-old group, statistically significant differences between
maturity groups were not detected. However, the logarithmic irre-
versibility transition matrices of each bin (Figure 4a) make a case
for the optimal pace of maturation even in the absence of statisti-
cal significance, as the average maturity groups in both age brack-
ets convey a larger number of brain state pairs where a strong
preference of switching direction is established. The contribu-
tion of each brain state pair to entropy production (Figure 4b)
also highlights a larger number of well-established irreversible
interactions in the average maturity groups. Taken together, the
statistical results (Figure 4d) may suggest that the clear advantage
of an on-time maturational pace is limited to a specific chronolog-
ical age window with a declining tendency in older age groups,
however, this possibility may need further investigation as the
graphical analyses presented in Figure 4a,b suggests a persistent
pattern of increased entropy production associated with average
maturity.

The difference in entropy production between the three dif-
ferent maturity groups, and the increased entropy in the average

Figure 4. Chronological age and maturity-related entropy production. a) Logarithmic irreversibility transition matrices illustrate two distinct, non-
symmetric values in each brain state pair, derived from the log ratio of the forward and reverse transition probabilities. The matrices inform about
the preference for directionality in brain state switching. The extent of deviation from 0 reflects the strength of directional preference (forward transitions
in red, backward transitions in blue), indicating a higher level of irreversibility and hierarchical organization in the brain. The hue and intensity diversity in
the matrices in the average maturity groups across both age groups indicates higher entropy production values compared to decelerated and accelerated
maturity groups. b) Graphs represent the cumulative contribution to entropy production of both forward and reverse transitions and reveal the level of
irreversibility in the dynamics of each brain state pair within age groups. Nodes represent the 12 brain states, edges indicate pairwise contributions to
entropy production, where increasing thickness and darkness represent greater contribution and, therefore larger irreversibility. Graphs indicate higher
entropy production in both average maturity groups, apparent in the thicker and darker lines. c) The effect of maturity is analyzed by averaging across
age groups within distinct maturity groups. d) Bar plots illustrate the average entropy production and respective 95% confidence interval for each ma-
turity group, calculated via inverse-variance weighting. Using two-sample z-tests, we compared the average group to both decelerated (p = 0.0098) and
accelerated (p = 0.0261) groups, observing significant differences in each comparison with large effect sizes (Hedges’ g) in 12-year-olds, however, the
analysis of 13-year-olds did not yield significant results.
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Figure 5. Summary of findings. To reveal the relationship between pubertal pace defined by skeletal maturity and the advancement of brain organization,
the connection between skeletal age-based maturation stages and hierarchical organization in the temporal dynamics of resting-state EEG recordings was
analyzed. Not only skeletal growth but brain development is also profoundly influenced by the dynamic shifts in pubertal hormone levels. Puberty onset
initiates synaptic pruning (reduction in dendritic spine density) and pruning then continues until adulthood throughout the nervous system. However,
as the conceptual figure suggests, synaptic pruning may not adhere to its expected course, but it may undergo dysregulation in cases of accelerated
or decelerated pubertal maturation. Untimely maturation with dysregulated synaptic pruning (under- or over-pruning) may lead to the emergence of
alterations in hierarchical brain organization (illustrated by the graphs in the right column – please see the caption for Figure 3b). These findings
indicate that an average maturational trajectory optimally aligns with cerebral hierarchical order and both accelerated and decelerated timelines result
in a reduction of cortical organization. This suggests that a Goldilocks rule of brain development might exist, favoring a particular maturational tempo.

maturity group in particular raises the issue of the functional rel-
evance of these results. As mentioned earlier, increased entropy
may reflect heightened hierarchical organization during intrin-
sic brain activity within the resting state network. In terms of be-
havioral consequences, modern theories of consciousness might
assist interpretation. The Temporo-spatial Theory of Conscious-
ness (TTC) of Northoff,[59–61] for example, brings the intrinsic or
spontaneous activity of the brain into focus and assumes that the
temporal dynamic and spatial topography of neural activity con-
stitute the “common currency” of neural and mental states. In
this context, intrinsic activity prepares the organism to interact
with external stimuli, which means that a higher level of organi-
zation during intrinsic activity will lead to a more adaptive inter-
action. One may also speculate that an atypical shift in the spatial-
temporal pattern of intrinsic activity – such as in the case of accel-
erated or decelerated development – may affect conscious states

such as metacognitive functions.[62] Currently, it is not known
whether adaptive developmental plasticity fully compensates for
accelerated or decelerated timelines, or increases the risk of be-
havioral problems and psychiatric disorders, therefore it is im-
portant to further investigate these issues.

The refinement of brain structure and bone development are
both part of the anatomical changes associated with puberty and
adolescence as illustrated in Figure 5. One of the significant mat-
urational events during this phase is the targeted elimination of
synapses, known as synaptic pruning[45,63–65] (Figure 5), which
occurs in various species[66,67] and across the nervous system[45]

during development to adapt to environmental conditions.[65,67]

This process is vital for optimal brain function and shaping a
healthy adult brain.[64,68] The timing of synaptic pruning has been
linked to puberty onset in rodents[69,70] and humans,[18] suggest-
ing that early or late puberty may lead to a correspondingly early
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or delayed initiation of synaptic pruning. However, it is not clear
whether synaptic pruning follows a normal course or becomes
dysregulated when it begins earlier or later (Figure 5). As insuffi-
cient synaptic pruning or “underpruning” has been tied to neu-
rodevelopmental disorders[4,22] and excessive pruning or “over-
pruning” to psychiatric conditions such as schizophrenia,[71,72]

it is important to ask whether untimely maturation may lead
to the emergence of alterations in brain organization, thereby
contributing to the current psychological challenges faced by
adolescents.[73–77] The temporal aspect of synaptic pruning holds
significance within hierarchical neurodevelopment as well. Typi-
cally, transmodal association regions undergo peak synaptic den-
sity later than sensory zones, experiencing pruning through-
out adolescence.[11,45,46] This design permits a broad experience-
dependent refinement window but also introduces the prospect
of prolonged vulnerability.[11,78] Untimely maturation with dys-
regulated synaptic pruning (under- or over-pruning) may lead to
the emergence of alterations in hierarchical brain organization
and may provide the anatomical basis of our findings.

In terms of limitations, the current project is confined to the
examination of adolescent females, a limitation that might be ap-
parent. However, a selection was essential when aiming to dis-
tinctly disentangle the impacts of maturation and chronological
age on brain development. Involving both sexes would have made
it difficult to carry out the detailed analysis within the narrow
temporal windows of biological and chronological age depicted
in Figure 1b. As male pubertal onset occurs ≈1–1.5 years later
than that of females,[32,79] this analysis would necessitate a con-
siderably larger sample size. We opted for the inclusion of fe-
males since menarche age provides valuable supplementary data
affirming the accuracy of bone age assessments (see Section Pro-
cedure in Experimental Section). Given the conclusive findings
with females, underscoring a substantial role of biological age in
brain development, it is plausible to assume a comparable effect
might manifest in males. Indeed, we would expect that maturity
is a relevant factor in the general brain development of males
as well; however, owing to the distinct gonadal hormone levels
governing female and male developmental trajectories,[21,80] dis-
parities are also anticipated, including the timing of the impact
of maturity levels.

An additional limitation of our study pertains to its cross-
sectional design within a relatively narrow age spectrum, which
prevents exploration of potential long-term consequences due
to variations in pubertal pace. The evolutionarily expanded het-
eromodal association cortices, mentioned in the introduction,
hosting a range of higher-order functions[11,48–50,81] may have the
potential to compensate when confronted with divergent mat-
urational paces. Nevertheless, the consequences of accelerated
or delayed development on relevant and precisely timed ado-
lescent brain alterations such as cortical volume reduction,[82,83]

gray matter thinning,[17,84] and synaptic pruning[18,45] remain un-
known. The human brain could conceivably adapt to distinct
maturational tempos, and with only transient disparities, devel-
opmental trajectories might still converge within the normative
range. While the distinctions in hierarchical brain organization
uncovered in our study may be transient, even these potentially
short-term developmental discrepancies are essential to discuss
since they could temporarily place the child outside the typical
range and cause heightened stress levels. Subsequent investiga-

tions must undoubtedly address the longitudinal trajectories of
brain development within cohorts characterized by diverse rates
of maturation. It needs to be considered, however, that any such
study faces a serious trade-off: observing long-term alterations
due to accelerated puberty onset is more likely with age, but direct
assessment of pubertal timing becomes less reliable with age. Al-
though a long-term follow-up between puberty onset and adult-
hood seems necessary to complement our work, in the current
study we have chosen to work with a cross-sectional sample to
get a first glimpse of the impact of different maturational tem-
pos on brain development.

4. Conclusion

To conclude, we would like to re-emphasize that maturation plays
a pivotal role in shaping both brain structure and behavior. This
process ensures that the brain efficiently coordinates distributed
computations across its entirety, allowing not only survival but
also optimal functioning. This efficiency hinges on a hierarchi-
cal orchestration of state-dependent, self-organized brain activity
over time. This orchestration facilitates near-optimal information
processing and transfer while minimizing energy consumption.
Therefore, a paramount concern of a comprehensive theory of
brain function is the exploration of hierarchy. This entails unrav-
eling the dynamic and evolving self-organization of brain states,
spanning from stability to transitions, as they navigate through
probabilistic and sometimes chaotic shifts. Here, we assumed
that the inherent hierarchy of spontaneous brain activity might
be reflective of the level of maturation. Harnessing the princi-
ples of thermodynamics, we quantified hierarchy by computing
the level of irreversibility in brain signals during resting state
conditions. Specifically, we captured the level of irreversibility
through entropy production[51,53,56,57,85] as computed through a
sophisticated clustering strategy. Note that resting states cover a
rich range of the dynamical repertoire of the brain and thus those
are ideal to characterize the most general and wide variety of in-
teraction across the whole brain, i.e., the underlying hierarchical
orchestration.

With respect to the broader relevance of our findings, although
the participants enrolled in the present study were deliberately
chosen to fall within a normative range of maturational speed
and were further screened for favorable socioeconomic circum-
stances, as well as the absence of developmental or neurologi-
cal disorders, the findings bear more general implications, es-
pecially for clinical domains. We found an advantage of on-time
maturation with respect to hierarchical brain organization within
our non-clinical cohort, indicating that significant deviations to-
ward either accelerated or delayed maturational speeds might
amplify disparities, leading developmental trajectories into the
clinical spectrum. The acceleration of pubertal development is a
growing concern today, particularly given the surge in medical re-
ferrals for young girls experiencing precocious puberty globally,
with some instances manifesting as early as 6 or 7 years old.[86–97]

Premature puberty carries the risk of compromised adult stature,
psychosocial challenges, and potential health complications later
in life.[44,98,99] The sudden peak in the lower left segment of
the puberty onset age distribution curve (akin to that depicted
in Figure 1a), corresponding to instances of early puberty on-
set, suggests that there may be significant implications for the
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broader population involving a rapid secular trend. The possi-
bility that developmental plasticity may not fully compensate for
these changes is highly relevant. Secular trends in pubertal onset
age persist across both developing and modern societies. While
advancements in living conditions primarily account for trends
in developing countries today,[13–15,100,101] negative anthropogenic
influences, such as endocrine-disrupting chemicals, have shaped
the trend in developed nations in the last decades.[100] The recent
pandemic has emerged as a novel potential factor influencing the
age of pubertal onset, and it is essential to further investigate its
impact on the general population.

In present times, within the most affluent nations, impor-
tant developmental events, such as birth and puberty can be
artificially timed, inducing intraspecies heterochrony which de-
notes variations in the timing of developmental events. Genetic-
induced heterochrony introduces natural variability throughout
evolution.[102–104] It remains uncertain whether anthropogenic-
induced heterochrony (e.g., accelerated trends in pubertal tim-
ing, or artificially delayed puberty) will yield compromised men-
tal functioning and health, or foster adaptive diversity in succes-
sive generations. Therefore, our study seems to be very timely,
and can be considered as a first step toward investigating the po-
tential outcomes of “anthropogenic heterochrony”. Mental health
problems have surged following successive lockdowns, demon-
strating the psychological toll on adolescents worldwide.[74–77]

The findings of our study will aid in devising interventions more
attuned to developmental contexts, thus lowering the risk of de-
veloping disabling psychopathologies in future generations.

5. Experimental Section
Participants: The study is limited to investigating adolescent and

emerging adult females, a deliberate choice made to disentangle the im-
pacts of maturation and chronological age on brain development. The in-
clusion of both genders would have hindered in-depth analysis within the
narrow temporal windows of biological and chronological age depicted
in Figure 1b. Given the delayed male pubertal onset,[32,79] a significantly
larger sample would be required. The inclusion of females since menarche
age that provided valuable supplementary data affirming the accuracy of
bone age assessments in adolescents was opted for.

Participants were recruited via school contacts and online advertise-
ments from Budapest, Hungary. Parents and/or participants provided de-
mographic, educational, and medical history details. One participant with
attention deficit disorder was excluded.

In order to determine the optimal sample size, power calculations for
a two-sample z-test for means were performed. A sample size of N ≥ 25
was found to be required for a power of at least 0.8 to detect a 0.8 effect
at p < 0.05. A sample size of N = 30 in the adolescent and emerging adult
chronological age groups was aimed for. This yielded 20 subjects in the
adolescent maturity groups with a power of at least 0.7. Ultrasonic bone
age screening was conducted, and adolescent participants were catego-
rized into BA/CA-defined bins, ensuring non-overlapping maturity groups:
average (CA-0.5≤BA≤CA+0.5), accelerated (CA+1.5≥BA>CA+0.5), and
decelerated (CA-1.5≤BA<CA-0.5). A pilot study revealed that ≈20% of ado-
lescents exhibited accelerated or decelerated maturation. Thus, 200 par-
ticipants were invited (100 per CA group) for BA screening, aiming for ≥10
participants per bin. Extreme cases (BA>CA+1.5, BA<CA-1.5) were ex-
cluded to avoid endocrinological complexities. This initial process resulted
in a total of 65 participants between 12 and 14 years of age. However,
during Section EEG Preprocessing (Experimental Section), 9 recordings
were excluded from the study due to excessive noise. To compensate for
this, targeted bone age screenings were conducted further and EEG data

of participants who fit into the aforementioned bin criteria were recorded,
aiming to maintain a nearly equal distribution of participants across bins.
From this additional recruitment, five new EEG recordings were success-
fully added. Thus, 61 girls aged 12–14 were included in the final cohort
as depicted in Figure 1b. The cohort of emerging adult participants con-
sisted of 30 subjects. EEG data of 26 participants was included after the
preprocessing procedure, as 4 recordings were removed due to noise.

The percentage of postmenarche participants in both age groups was
the lowest in the decelerated groups (see the Open Science Framework
link, Supporting Information), suggesting that bone age is indeed a reli-
able gauge of maturity in adolescence. Mean menarche age of adolescent
participants was 12.06y (SD = 0.72). Twenty seven of sixty one participants
did not provide data on menarche as they have not reached that stage yet.
Mothers (88.52%) and fathers (83.61%) of adolescent participants had a
university degree demonstrating high socioeconomic status among the
participating families. The EEG data collection was part of a large-scale
study, within which each adolescent participant was also administered the
Wechsler Intelligence Scale for Children, 4th edition (WISC-IV),[34] carried
out a fine motor task,[36] and a Stroop test.[35]

The Hungarian United Ethical Review Committee for Research in Psy-
chology (EPKEB) approved the study (reference number 2017/84). Written
informed consent was obtained from all subjects and their parents. Par-
ticipants were given gift cards (≈EUR 15 value each) for their attendance.
All research described in this paper was performed in accordance with the
Declaration of Helsinki.

Procedure—Bone Age Assessment: Body measurements were taken
according to the protocol laid down in the International Biological
Programme[105] using standard instruments. Skeletal maturity assess-
ment began with an anthropometric procedure that includes the mea-
surement of full body and sitting height (GPM Anthropometer, DKSH,
Switzerland Ltd, Zurich, Switzerland), as well as body weight (Seca digital
scale). Ultrasonic bone age estimation was conducted using the Sunlight
BonAge System (Sunlight Medical Ltd, Tel Aviv, Israel), scanning the speed
of sound (SOS) between the distal radius and ulna epiphysis.[106] This
bone structure reflects the level of maturation as well as it changes sig-
nificantly during stages of physical growth. The BonAge device calculates
bone age in years and months using software that accounts for ethnicity
and gender. Using ultrasound for skeletal maturity assessment is safe for
the subjects as opposed to ionizing radiation-based techniques, while re-
sults obtained from these two types of procedures are highly correlated.[40]

Bone age assessment was performed on the left hand and wrist of
participants in each case. Participants were instructed to position their
hands between the transducers on the unit’s armrest. The device is then
attached to the wrist, applying a pressure of ≈500 g. Transducers trans-
mitted 750 kHz frequency ultrasound through the wrist to measure SOS.
The transducer on the ulnar side emits ultrasound while the other trans-
ducer acts as a receiver. Measurement protocol was repeated five times
for accuracy, each measurement lasting ≈20 s. Measurements were com-
pleted either at the high schools of participants or at the Research Centre
for Sport Physiology at the University of Physical Education, Budapest. The
entire procedure took 5–10 min per person. Trained assistants conducted
the measurements, and a biological anthropologist oversaw the measure-
ment procedure and data analysis.

Bone age assessment results are considered valid for 3 months. Sub-
jects were invited for the resting state electroencephalography (EEG)
recording session within this timeframe. If a subject participated in lab-
oratory testing 3 months after the bone age assessment, the procedure
was repeated.

Procedure—Resting State EEG Data Recording: Continuous EEG data
were recorded using the HydroCel GSN 130, a 128-channel high-density
EEG (HD-EEG) system (Electrical Geodesics, Inc., Canada), with the Net
Station Acquisition software (version 5.4) in a windowless, air-conditioned
room insulated from external noise and electromagnetic interference. The
physical setting of each EEG recording session was uniform. All partici-
pants underwent the same procedure during recording, minimizing the
variability caused by external stimuli. Before recording, participants were
asked to remove all electronic devices, e.g., phones and smartwatches
from their pockets and bodies. Following a brief guided relaxation, two
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5-min (300 s) long resting state recordings were collected at a 1000 Hz
frequency sampling rate. Impedances were aimed to be kept below 5 KΩ
on all channels. EEG data recording took place at the Laboratory for Psy-
chological Research, Pázmány Péter Catholic University, Budapest.

Two 5-min-long resting state conditions were recorded according
to standard protocol.[107–110] In the first 5-min-long recording seg-
ment, participants were instructed to keep their eyes open, blink mini-
mally, and maintain posture to minimize artifacts generated by muscle
movement.[111] During the second 5 min of recording, participants fol-
lowed the same protocol, but were instructed to keep their eyes closed.
The two conditions are separated since they exhibit different character-
istics, namely a mismatch in topography and activity levels.[112] EEG
spectral analysis of closed eyes HD-EEG resting state recordings can be
found in Supporting Information, under the title of “Age-related changes
in the power spectrum” and confirms that the dataset shows the known
and expected[113–115] age-related changes, thereby supporting the repro-
ducibility of the measurements. In the present study, all statistical analy-
ses were performed on closed-eye recordings. The selection of the closed-
eye condition was motivated by the known reduction of alpha oscillations
in the presence of visual stimuli and visual attention. Interested read-
ers can find the power spectra of both open eyes and closed eyes condi-
tions in Supporting Information (“Alpha power reduction in “open eyes”
condition”) demonstrating the obvious reduction in alpha power when
the eyes are open. In spite of this reduction, all the following compu-
tations were also carried out for the latter condition and no significant
maturity-related variations (Supporting Information “Entropy production
under “open eyes” condition”) were found.

Procedure—EEG Data Preprocessing: EEG preprocessing was per-
formed in MATLAB (The MathWorks, Inc.; version: R2021a Update 4),
using the EEGLAB toolbox[116] (version 2021.1). First, a high-pass filter
was applied at 1 Hz (transition bandwidth 1 Hz; passband edge 1 Hz;
cutoff frequency −6 dB 0.5 Hz; zero-phase non-causal filter) to eliminate
low-frequency noise and direct-current offset, and a 40 Hz low-pass fil-
ter (transition bandwidth 10 Hz; passband edge 40 Hz; cutoff frequency
−6 dB 45 Hz; zero-phase non-causal filter) to remove 50 Hz line noise
and high frequency components, using EEGLAB’s basic finite impulse re-
sponse (FIR; version 2.4) filter. Channel locations were then imported into
EEGLAB, the channel layout map was supplied by Electrical Geodesics,
Inc. Following filtering steps, noisy channels, determined by two indepen-
dent raters via visual inspection, were excluded manually. As the last steps,
noisy epochs were removed from the recordings using the Clean Rawdata
(version 2.4) plugin, then data were re-referenced to average reference.
The same preprocessing procedure was implemented for all recordings.

Data Analysis—Leading Eigenvector Dynamics Analysis: After prepro-
cessing, Leading Eigenvector Dynamics Analysis (LEiDA),[58] adapted to
EEG data by the group, was employed to analyze dynamic functional
connectivity[51,55] in the developing brain. The steps described below were
performed on individual EEG recordings and were uniform in all cases.

Although EEG recordings offer an opportunity to analyze data across a
wide range of oscillation frequencies, further analyses within the alpha (8–
12 Hz) frequency band was chosen to be carried out. This choice is largely
based on the fact that both adolescent[113,114] and adult[117,118] resting-
state brain activity is dominated by the alpha rhythm. The relevance of
the alpha band in resting state studies is further emphasized by more re-
cent findings demonstrating the overlap between fMRI-based large-scale
networks and resting state connectivity in the alpha band.[119,120] It might
also be relevant to mention that oscillations below the alpha range tend
to engage the entire cortex and mostly contribute to long-range temporal
integration,[121] while oscillations beyond the alpha range tend to be more
local, preventing a meaningful analysis of global hierarchical brain organi-
zation. However, for interested readers, the entropy production results of
delta, theta, beta, and sigma bands on the OSF website (under Support-
ing Information) have been included. These analyses did not result in any
significant maturation-related differences in entropy production.

First, preprocessed EEG recordings were filtered with a 6th-order But-
terworth bandpass filter for the alpha band (8–12 Hz) without introducing
a phase shift, then downsampled to 100 Hz (intervals of 10 ms). Sub-
sequently, signals were detrended and demeaned, followed by a Hilbert-

transformation to obtain the phase of all channels at all timepoints t. The
nominal recording duration of 300 s yielded a temporal sequence of up
to 30 000 phase vectors per subject. However, the EEGLAB toolbox typ-
ically excised small parts of the sequence, so that the average sequence
length was 28 500 vectors (SD = 1600). During preprocessing, a minority
of electrodes with interrupted EEG signals during some or all of the record-
ing (“bad channels”, range: 0–12; see Section EEG Data Preprocessing in
Experimental Section) was observed. To obtain full-size (128 × 128) coher-
ence matrices at all timepoints and for every subject, a two-step approach
termed “patching” was developed. In the first step, group-level lists of
“bad channels” by combining noisy channels from all subjects in a group,
specifically, the 6 bins of adolescent participants (depicted in Figure 1e)
and the group of adult subjects were formed. For n remaining “good chan-
nels” shared by all subjects of the group, instantaneous phase coherence
PCxy,t was computed at every time point for each electrode pair as

PCxy,t = cos
(
𝜙
(
Ex,t

)
− 𝜙

(
Ey,t

))
(1)

where Φ(Ex,t) and Φ(Ey,t) denote the instantaneous phase of electrode x
and y, respectively, at each time point t. This resulted in a temporal se-
quence of n x n phase coherence matrices, sampled at 10 millisecond
intervals, for each subject. The leading eigenvector (1xn) of each matrix
was used to summarize the instantaneous pattern of phase differences
between electrodes at every time point. Then, these vectors were clustered
with Matlab’s built-in k-means clustering algorithm, assigning a cluster la-
bel to all timepoints in all subjects. In the second step, the missing phase
values of “bad channels” in all subjects were patched. To this end, the
missing phase values of a “bad channel” x at a time point t assigned to a
particular cluster was replaced by randomly sampling a phase value from
the ensemble of values recorded in other subjects of the same bin at the
same electrode x and at time points assigned to the same cluster. Perform-
ing this procedure for all groups, subjects, and “bad channels” permitted
us to reconstruct full-size phase vectors (1 × 128) and full-size phase dif-
ference matrices (128 × 128). Full-size leading eigenvectors (1 × 128) were
obtained from full-size phase difference matrices. It should be noted that
eigenvectors had the same dimension as the original phase vectors, but
represented relative rather than absolute phase.

To identify patterns of phase differences that were common to all sub-
jects – also referred to here as “brain states” and depicted in Figure 6
–, the leading eigenvectors at all timepoints and from all subjects were
pooled and clustered via a modified k-means algorithm[122] such as to ob-
tain polarity invariant topographical maps. Through the modified k-means
clustering algorithm, each vector is assigned to one of k clusters (or brain
states) and is labeled accordingly (see Figure 6), allowing us to represent
the continuous EEG activity as a trajectory of, and transition between, brain
states. LEiDA was carried out in Matlab (version: 2021a). While the results
presented here are based on 12 clusters, analyses were also conducted us-
ing 6, 8, and 10 clusters and 12 clusters specific to each unique group (see
the Open Science Framework link under Supporting Information). The re-
sults of these additional analyses were consistent with those presented
in Section 2. Results regarding maturity-related entropy production. The
results based on 12 brain states since it provides the most detailed de-
scription of the data were chosen to be presented.

A representative example of a sequence of successive patterns of phase
differences (brain states) is shown in Figure 7a. The average duration of
brain states was 125 ms, with a standard deviation of ±0.4 ms over groups
(range: 12–13 ms) and ±1.5 ms over subjects (range: 100–170 ms). How-
ever, the durations of individual brain states were quite variable (range: 50–
500 ms), with the average standard deviation over subjects being ±9 ms
(range: 7–14 ms).

Data Analysis—Entropy Production Calculation: To quantify asymmetry
in the temporal dynamic of state space trajectories, the temporal sequence
of brain states (Figure 7a) of each subject was transformed into a table of
transition counts Nij by removing diagonal entries (remaining in the same
brain state) and by counting the observed number of forward and reverse
transitions between pairs of different brain states (i,j). A representative ex-
ample table is shown in Figure 7b. To avoid singularities in the subsequent

Adv. Sci. 2024, 2308364 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2308364 (13 of 18)

 21983844, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202308364 by T

est, W
iley O

nline L
ibrary on [20/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

Figure 6. Brain state topographies. After initial preprocessing, EEG signals were analyzed via Leading Eigenvector Dynamics Analysis (LEiDA). First,
Hilbert transform was applied to each recording to acquire the phase of each electrode. Then, the instantaneous phase coherence between all electrode
pairs was computed, yielding a 128 × 128 phase distance matrix for each time point t. Leading eigenvectors were extracted from the matrices via
eigenvector decomposition. Following LEiDA, leading eigenvectors of all subjects were pooled, then clustered via modified k-means clustering to obtain
topographically distinct connectivity patterns, which is referred to here as “brain states”. As leading eigenvectors from all subjects are combined, the
twelve activity patterns are rendered uniform in each group. Brain states are ranked according to their dominance duration, expressed in percentages
accompanying rank labels, with brain state number 01 accounting for the largest percentage of total activity, and brain state number 12 the smallest.
The color scale denotes cosine similarity, with similarly colored dots indicating electrodes with congruent signal phases. Accordingly, values of 1 (dark
red) and −1 (deep blue) represent similar and dissimilar (opposite) phases, respectively. Note that electrodes with similar and dissimilar phases form
two spatially contiguous subsets.

computation of entropy production, all counts were incremented by one,
N”ij = Nij+1. Any effect of this change was nullified by the noise floor cor-
rection (see below). The corresponding transition probabilities were then
obtained as Pij = N”ij/Σij N’ij. To quantify the asymmetry in the pattern of
state transitions, deemed indicative of the level of hierarchical organiza-
tion, entropy production (also termed relative entropy)[52] was computed
for each subject as the Kullback–Leibler (KL) divergence:

H = DKL =
∑

i,j
Pij log

Pij

Pji
(2)

where DKL and H denote the total entropy production (i.e., the asymmetry
between forward and reverse transition probabilities in brain state switch-
ing), Pij denotes the transition probability from brain state i to brain state
j, while Pji expresses the probability of switching from brain state j to brain
state i.

To estimate the variance of the observed entropy values, 1000 synthetic
transition trajectories as Markov chains were generated from the transi-

tion probability table observed for each subject via MATLAB’s two built-in
functions, one of which creates discrete-time Markov chains and the other
simulates Markov chain state walks. Synthetic trajectories had the same
length as observed trajectories. Converting synthetic chains into entropy
production values with Equation (2) produced a distribution of 1000 en-
tropy production values for each subject.

As the finite length of trajectories inflates entropy production values,
a noise floor correction was additionally performed.[52] To this end, 1000
synthetic trajectories of the same length from a symmetric transition table
(obtained by averaging the observed table with its transpose) were further
synthesized. Although perfectly symmetric transition probabilities should
not produce any entropy, the resulting value distribution was positive, re-
vealing inflation due to finite trajectory length. To obtain corrected entropy
production values, the mean symmetric-table entropy was subtracted from
the all asymmetric-table entropy values. From the distribution of corrected
values, a mean and estimated variance of entropy production for every
subject were obtained. It should be noted that the procedure kept in-
tact the temporal order of trajectories, taking subject-specific brain dy-
namics into account, and improving on the simpler approach of Lynn
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Figure 7. Transitions between brain states. a) Brain states numbered 1–12 are represented here by colored disks. Only the initial 10 s of a recording
lasting 284 s are shown, specifically, the initial 1000 leading eigenvectors (observed at 10 ms intervals) in a sequence of 28 400 eigenvectors. In this
particular example, the average duration of brain states was 98 ms (i.e., 9.8 consecutive eigenvectors were assigned to the same state, on average). b)
Number of observed transitions between different states in the entire sequence of 28400 states. Previous states are represented by rows, and the next
states by columns. Table entries indicate how often each particular transition was observed. Entropy production quantifies the degree of asymmetry in
this matrix.

and colleagues.[52] All calculations were performed in Matlab (version:
2021a).

Data Analysis—Calculating Group Averages and Confidence Intervals:
Group averages and variances of entropy production were computed by
inverse-variance weighting. This was done to address the subject hetero-
geneity and to attenuate the influence of subjects with high variance on
the weighted arithmetic mean. The following formulas were used:

H̄ =
∑

i Hi∕𝜎2
i∑

i 1∕𝜎2
i

(3)

var
(
H̄
)
= 1∑

i 1∕ 𝜎2
i

(4)

where H¯ is the inverse variance weighted group average entropy pro-
duction, Hi denotes the mean observed entropy production for subject
i, 𝜎i

2 denotes the observed variance for subject i, and var(H)̄ denotes
the inverse variance weighted group variance. 95% confidence intervals
for group-level mean entropy production were also computed based on
±1.96*√(var(H)̄). Group averages and confidence intervals were calcu-
lated in Matlab (version: 2021a).

Data Analysis—Statistics: Statistical assessment of group differences
was carried out using two-sample z-tests,[123] using the following formula:

Z =
H̄1 + H̄2√(

var
(
H̄1

)
+ var(H̄2

) (5)

The significance level (p) in the two-sample z-test is determined as in
the following:

p = 2Φ (− |Z|) (6)

where Φ is the standard normal cumulative distribution function.
Results obtained from two-sample z-tests were reported with Hedges’

g effect size estimations. All statistical tests were carried out in Microsoft
Excel Professional (version 2021).

Supporting Information
Demographic and anthropological datasets, EEG analyses, and further
analyses are available at the Open Science Framework (OSF) platform at
this address: https://osf.io/eqmwd/?view_only=0c48de5f396d4cc681aa
894ad093b0fc.
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