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In recent years, the application of network analysis to neuroimaging data has provided

useful insights about the brain’s functional and structural organization in both health

and disease. This has proven a significant paradigm shift from the study of individual

brain regions in isolation. Graph-based models of the brain consist of vertices, which

represent distinct brain areas, and edges which encode the presence (or absence) of

a structural or functional relationship between each pair of vertices. By definition, any

graph metric will be defined upon this dyadic representation of the brain activity. It

is however unclear to what extent these dyadic relationships can capture the brain’s

complex functional architecture and the encoding of information in distributed networks.

Moreover, because network representations of global brain activity are derived from

measures that have a continuous response (i.e., interregional BOLD signals), it is

methodologically complex to characterize the architecture of functional networks using

traditional graph-based approaches. In the present study, we investigate the relationship

between standard network metrics computed from dyadic interactions in a functional

network, and a metric defined on the persistence homological scaffold of the network,

which is a summary of the persistent homology structure of resting-state fMRI data.

The persistence homological scaffold is a summary network that differs in important

ways from the standard network representations of functional neuroimaging data: (i) it is

constructed using the information from all edge weights comprised in the original network

without applying an ad hoc threshold and (ii) as a summary of persistent homology, it

considers the contributions of simplicial structures to the network organization rather

than dyadic edge-vertices interactions. We investigated the information domain captured

by the persistence homological scaffold by computing the strength of each node in the

scaffold and comparing it to local graph metrics traditionally employed in neuroimaging

studies. We conclude that the persistence scaffold enables the identification of network

elements that may support the functional integration of information across distributed

brain networks.
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FIGURE 6 | Normalized Metric Values. The normalized nodal values are displayed for each graph measure under study. The values for PSS, BC, DC, and Eff are

respectively depicted from left to right. While computation of the PSS does not require ad hoc thresholding, the BC, DC, and Eff metrics are threshold-dependent and

nodal metric values have thus been integrated over the threshold range under study to generate a single value for each node. The analysis used is described in detail

Section 3.2.

clique complexes at an early stage in the filtration, leading to low
PSS value. Moreover, the value of the correlation between PSS
and BC was around R = 0.4 in both the binarized and weighted
network analyses, which further suggests that the PSS and BC do
not reflect identical network attributes.

The highest-ranking regions on the PSS measure
(Figures 6, 7) were distributed across the brain, consistent
with potential roles in the global integration of local networks.

There was nevertheless a tendency for the PSS hubs to belong
to frontal cortical areas (middle and superior frontal gyri,
precentral gyrus, rolandic operculum, cingulate), and subcortical
structures (amygdala, globus pallidum, caudate nucleus). In
the posterior brain, PSS-hubs within the parietal lobe included
the inferior and superior divisions of the parietal gyrus but did
not include midline parietal structures. In the occipital lobe, a
visual association area located in the superior occipital cortex
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FIGURE 7 | Graphical display of the highest-ranking nodes. Functional hubs identified on the PSS measure and three standard topological centrality metrics

(BC, DC, Eff ). Hubs on each measure are defined as having a value >1 S.D. of the mean of their respective distribution. Nodes overlapping with the PSS hubs are

shown in brown. The corresponding AAL labels for each numerical index are included in Supplementary Figure S1.

ranked highly as a PSS hub, as did the calcarine fissure which
includes part of the primary visual cortex (V1). We note that
V1, which also ranked highly on the DC metric in this study,
has previously been shown to engage in distributed networks
thought to support mental imagery during the resting-state
(Wang et al., 2008). Interestingly, no subdivision of the temporal
cortices were included amongst PSS-hubs, despite several of
these regions ranking highly on the DCmeasure.

We also paid attention to the special case of high-ranking
PSS nodes which did not qualify as “hubs” on any of the
three standard topological centrality measures (DC, Eff , BC).
This subset of nodes was anatomically restricted to the lateral
frontal and parietal cortices. They included the middle and
superior frontal gyri, as well as inferior and superior sections
of parietal gyri. These findings would suggest that, relative
to standard topological centrality metrics, the PSS may be
particularly sensitive to the network activity of frontal and
parietal association areas located on the lateral surface of
the brain. This would be consistent with the established role
of these regions toward supporting high-level cognitive and
behavioral functions requiring the large-scale coordination of
network elements. The relative importance of PSS-hubs toward
the information processing capacities of the brain should notably
be assessed in future studies by means of virtual lesions in whole-
brain computational models (Deco and Kringelbach, 2014; Deco
et al., 2015; Váša et al., 2015).

It has now become well recognized that the brain performs
local computations in segregated modules that become
seamlessly integrated over space and time to support high-level
functions necessary for survival. Some brain regions are likely
to play a more critical role than others toward enabling the
global integration of information. The exact identities of these
regions and the optimal experimental approaches for identifying
them remain unclear. However, recent evidence would suggest
that integrative nodes, such as those potentially identified via
the persistence homological scaffold, require metastability for
maximal exploration of the full dynamic repertoire of the brain
(Kringelbach et al., 2015). Previous research has employed

diffusion tensor imaging (DTI) and graph theoretical analysis
to identify a subset of hubs which forms a central core or
“rich-club” that has been suggested to be important for global
brain integration by linking together spatially remote network
communities (van den Heuvel and Sporns, 2011). Yet, the
mapping of a structural network architecture that can plausibly
support segregation and integration does not describe the causal
mechanisms and/or activity dynamics that actually underlie
functional segregation and integration of information (Deco
et al., 2015). The identification of integrator hubs directly from
functional neuroimaging data using the homological scaffold
may be particularly valuable in this regard.

The application of computational topology analysis to
functional neuroimaging data is a novel avenue of research,
and the physiological significance of homological scaffolds and
related measures remains unclear. Given that high PSS nodes
participate in a large proportion of cycles along the filtration,
such nodes may be well positioned to contribute to a specific
type of integration where, for example, a given neural pathway
diverges than re-converges. Examples of such pathways include
the dorsal/ventral visual streams and the well-defined cortico-
basal loops between the basal ganglia and motor cortex. Further
studies will be needed to test these hypotheses with specificity,
but we nevertheless point out that the identification of both visual
areas as well as basal ganglia and cortical motor areas amongst the
PSS-hubs in the present analysis supports this idea.

Whilst the present results suggest that high-ranking PSS
nodes could be well positioned to support the integration of
information across segregated brain modules, further studies
will be needed to confirm this observation. One potential
approach would be to apply recently developed measures
of perturbational integration and segregation in a whole-
brain computational model. Previous work has shown that,
by perturbing in silico neural dynamics by a random set of
Gaussian inputs, one can estimate the amount of integration in
the system calculated after each perturbation. In this context,
perturbational integration is defined by considering the length
of the largest connected component of the functional network
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as an estimate of the amount of integration in the system
after each perturbation, as described in detail in Deco et al.
(2015). One would therefore expect virtual lesions to high-
PSS nodes to have a particularly profound impact on the
system’s integration capabilities, relative to randomly selected
network nodes. Another possibility would be to investigate
changes in PSS hubs assignment and distributions in clinical
syndromes characterized by disordered functional integration at
the whole-brain scale, such as schizophrenia (Alexander-Bloch
et al., 2010; Lynall et al., 2010). Both approaches could help
determine to what extent PSS-hubs support the integration of
network elements, and potentially provide useful insights into the
neurobiological attributes of topologically central brain regions
in the homological scaffold.

Another limitation of this study, as mentioned in Section
2.2.6, is the choice of the representative cycles for homology
classes, which could result in selecting edges that do not belong
to the shortest cycle around a certain hole. A possible way
around this limitation would be to perform an a posteriori
analysis of the cycles, in which one controls for the evolution
of the subgraph’s transitivity (as done in Petri et al., 2014). One
could also consider employing computationally cumbersome
techniques to track the shortest path across the filtration and
then update the scaffold accordingly, Dey et al. (2011a,b). Further
work is needed to establish which protocol would be most suited
to the specific case of fMRI networks. Our results on network
communities nevertheless suggest that the cycle choice issues
might not be so critical in our study and potentially lead to a
stronger PSS interpretation. Indeed network communities, being
densely connected internally and strong information integrators,
likely constitute the network regions where connected triangle
components reside and thus the regions where different
representative cycle choices are possible. Moreover, scaffold
hubs already tend to have large participation coefficients
suggesting that they behave as information brokers between these
communities and are therefore, although imperfectly, capturing
the large-scale homological structure.

In summary, the present study has explored the relationship
between standard network metrics in functional brain network
and the persistence homological scaffold derived from the same
fMRI dataset. The computation of a local graph measure on
the PSS differs from standard applications of graph theory to

functional neuroimaging data as the scaffolds are not derived
from typical dyadic interactions between network elements, and
consider information from all edges in the network. The results
suggest that topologically central nodes in the persistence scaffold
may play important roles toward supporting the functional
integration of information across brain modules. Future work
should investigate the sensitivity of the homological scaffolds and
derived measures to disease-related changes in brain function as
well as the specific type of integration performed by the strongest
edges and nodes in the scaffolds.
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