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Different hierarchical reconfigurations  
in the brain by psilocybin and escitalopram 
for depression

Gustavo Deco    1,2  , Yonatan Sanz Perl1,3, Samuel Johnson    4,5, 
Niamh Bourke6,7, Robin L. Carhart-Harris8,9 & Morten L. Kringelbach    6,7,10 

Effective interventions for neuropsychiatric disorders may work  
by rebalancing the brain’s functional hierarchical organization.  
Here we directly investigated the effects of two different serotonergic 
pharmacological interventions on functional brain hierarchy in major 
depressive disorder in a two-arm double-blind phase II randomized 
controlled trial comparing psilocybin therapy (22 patients) with 
escitalopram (20 patients). Patients with major depressive disorder  
received either 2 × 25 mg of oral psilocybin, three weeks apart, plus  
six weeks of daily placebo (‘psilocybin arm’) or 2 × 1 mg of oral psilocybin, 
three weeks apart, plus six weeks of daily escitalopram (10–20 mg; 
‘escitalopram arm’). Resting-state functional magnetic resonance  
imaging scans were acquired at baseline and three weeks after the  
second psilocybin dose (NCT03429075). The brain mechanisms  
were captured by generative effective connectivity, estimated from  
whole-brain modeling of resting state for each session and patient. 
Hierarchy was determined for each of these sessions using measures  
of directedness and trophic levels on the effective connectivity,  
which captures cycle structure, stability and percolation. The results 
showed that the two pharmacological interventions created significantly 
different hierarchical reconfigurations of whole-brain dynamics with 
differential, opposite statistical effect responses. Furthermore, the use  
of machine learning revealed significant differential reorganization of  
brain hierarchy before and after the two treatments. Machine learning was 
also able to predict treatment response with an accuracy of 0.85 ± 0.04. 
Overall, the results demonstrate that psilocybin and escitalopram work in 
different ways for rebalancing brain dynamics in depression. This suggests 
the hypothesis that neuropsychiatric disorders could be closely linked  
to the breakdown in regions orchestrating brain dynamics from the top of  
the hierarchy.
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such as functional connectivity (FC) are not suitable because they are, 
by definition, symmetric.

The overall result was that the two pharmacological interventions 
gave rise to significantly different hierarchical reconfigurations follow-
ing treatment, with differential, opposite statistical effect responses. 
In other words, we found significant differences between measures 
of both directedness and the trophic level, before and after interven-
tion. These differences were found both from direct statistical tests 
and when using machine learning to measure the degree of pattern 
separation. Furthermore, we also found significant differences in 
trophic levels when comparing responders with non-responders for 
each pharmacological intervention. Importantly, pharmacological 
interventions were found to work best when select cortical and sub-
cortical regions in the so-called ‘global workspace’ were re-established 
as being near the top of the hierarchy28. These results strongly suggest 
that the psilocybin and escitalopram work in very different ways when 
used for rebalancing the hierarchical organization of brain dynamics in 
depression. In general, the research presented here offers a principled 
route to evaluate the effects of pharmacological intervention based 
on empirical brain dynamics data. Many obstacles remain, including 
replication of the results in a much larger population and for other 
interventions, but the results show potential for fulfilling the great 
expectations of using neuroimaging for understanding the underlying 
mechanisms of neuropsychiatric disorders.

Results
We addressed the main research question of how pharmacological 
interventions affect brain dynamics by assessing hierarchical recon-
figuration in the brain state in MMD patients enrolled in a double-blind 
phase II randomized controlled trial comparing two drugs (psilocybin 
and escitalopram)23. In this study, as shown in Fig. 1a, neuroimaging 
resting-state data were acquired before and after the pharmacological 
intervention (details of the trial are provided in Methods). We used the 
data for these two sessions six weeks apart to quantify the effects on 
global directedness and regional trophic levels on the brain dynamics 
following either intervention.

Quantifying hierarchy in brain states
To reveal the spatiotemporal hierarchical organization of the brain 
dynamics for the two pharmacological interventions, we implemented 
a method measuring the directedness and trophic levels of a network 
based on previous work in ecology29 and extended to general directed 
networks24. This measure of hierarchy is very robust and has been used 
in many other fields; it has been described as ‘upstreamness’ in econom-
ics30 and is a key ingredient in the construction of SinkRank, a measure 
of contribution to systemic risk31.

For a given directed network, this method provides both the hier-
archical, node-level information (trophic level) and the global infor-
mation (the directedness, or trophic coherence). In other words, the 
trophic level provides a measure of where a node sits in the hierarchy 
of a directed network. In ecology, low trophic levels would be assigned 
to plants, and high trophic level nodes would be assigned to carnivores, 
given that energy flows up the food web from low to high trophic levels. 
Our implementation of the hierarchy methods uses the recent exten-
sion from ref. 24 to the standard definitions of trophic level, which 
allows the method to overcome the limitations of requiring a basal 
node (that is, a node with no incoming edges) and taking into account 
reverse flow. As a result, this optimized method is even more robust, 
as it captures aspects of related network measures of stability, cycles 
and normality.

We thus use a well-established method to measure the spatiotem-
poral hierarchical organization of brain dynamics. Figure 1b presents 
a cartoon illustrating the trophic levels and directedness measures 
for flat and hierarchical networks. As can be seen in the top panel, 
a flat hierarchy has approximately equal trophic levels, resulting in 

Neuropsychiatric disorders are devastating, incurring significant dis-
ability and stigma for individuals and a serious and growing burden 
for society1,2. Major depressive disorder (MDD) has become pervasive. 
A major contributor to the years lost to disability worldwide, in terms 
of the burden of disease, by 2030 MDD is predicted to become the 
largest contributor3. Adding to this problem, antidepressant drugs 
show modest efficacy4,5, have unpleasant side effects that impact 
treatment adherence6 and are associated with high relapse rates7. 
Problems with current treatments and the scarcity of reliable animal 
models mean that new research strategies are needed to treat neu-
ropsychiatric disorders8,9. Yet, at the present time, it is not clear how 
brain dynamics change when patients get better following pharma-
cological intervention.

Neuroimaging has identified abnormal brain dynamics in depres-
sion10,11, with changes linked primarily to higher-order brain networks 
including the default mode network (DMN), executive network (EN) and 
salience network (SN)11,12. Research in healthy individuals has associated 
these networks with higher-order functioning, including executive con-
trol and attentional switching13, which are often impaired in depressed 
patients14. There have also been neuroimaging studies investigating 
the effective connectivity in depression associated with treatment 
response15–17. Successful pharmacological intervention for depres-
sion must therefore be linked to a rebalancing of these dynamics. One 
candidate mechanism is the role of the serotonin 2A (5-HT2A) receptor 
subtype, which is closely associated with serotonergic psychedelic 
drugs such as psilocybin18,19. The spatial distribution of 5-HT2A recep-
tors overlaps with the DMN, EN and SN20. It has been hypothesized in 
the ‘relaxed beliefs under psychedelics’ (REBUS) theory21 that psych-
edelics can bring about a relaxation of the precision of high-level priors 
or ‘beliefs’, allowing bottom–up rather than hierarchical top–down 
information flow, which is consistent with more hierarchy-free system 
dynamics, suggesting a hierarchical reconfiguration of brain dynam-
ics22. However, a full whole-brain quantification of hierarchical process-
ing has not yet been attempted.

In this Article, the main aim is to study the effects of pharmaco-
logical intervention on brain dynamics and in particular to determine 
how this affects the hierarchy of brain processing associated with two 
serotonergic pharmacological interventions given to patients with 
treatment-resistant depression. To answer this research question, we 
leveraged a double-blind phase II randomized controlled trial23, where 
resting-state functional magnetic resonance imaging (fMRI) scans at 
baseline and after treatment were obtained from all patients22. To best 
quantify the changes in brain dynamics, we implemented a sensitive 
measure of hierarchy, inspired by work in ecology capturing the hier-
archical relationships between plants, herbivores and carnivores in a 
food web. The method uses the concept of trophic levels for each node 
in a directed graph, which can be thought of as the ‘height’ of a node in 
the hierarchy24. A flat hierarchy is characterized by equal trophic levels 
and low directedness, which reflects low asymmetry in a network. In 
contrast, a strong hierarchy is associated with high directedness and 
strong asymmetric connections in a many-layered network. This meas-
ure of directedness (also called trophic coherence) has been related to 
other network properties, such as cycle structure, stability, normality 
and percolation25.

This hierarchy measure provides the global level of directedness 
and regional trophic levels, which we applied to the graph of the gen-
erative effective connectivity (GEC) matrix26. This was estimated from 
whole-brain modeling of the resting state for each session of each 
patient. The GEC is an extension of the classic concept of effective 
connectivity27, but generative in the sense that the GEC is created 
from a whole-brain model of empirical resting-state data, where the 
strengths of existing anatomical connectivity are adapted iteratively 
until best fit, thus providing a mechanistic explanation of the resting-
state data. This asymmetric measure of functional brain connectivity 
is fundamental for assessing hierarchy, while other simpler measures 
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low directedness and reflecting the low asymmetry of the network. 
This is not the case for a strong hierarchy, which is associated with 
high directedness and consequently strong asymmetric connections.  
In the latter case, the diversity of trophic levels reflects that the network 
contains many hierarchical layers and an overall direction pointing 
from the lowest to the highest.

To estimate the functional hierarchy of a given brain state, we 
applied this method to the network produced by whole-brain modeling 
of a patient’s individual resting state in the DK80 parcellation28. This 
network captures the underlying mechanisms generating the resting-
state dynamics32. In brief, whole-brain modeling combines the anatomi-
cal connectivity with local dynamics to fit the dynamics of empirical 
neuroimaging data32–34. The local dynamics can be simulated using, 
for example, spiking, dynamical mean field and Hopf local regional 
models to fit many different empirical observables. Overall, the best 
fit is obtained with the Hopf model, so we chose to fit this model to 
the model-free observable of non-reversibility of the neuroimaging 
data26,35–37. More specifically, Fig. 1c shows the procedure for fitting a 
whole-brain model, initially using the anatomical connectivity and then 

iteratively adjusting a GEC, which is given as asymmetric weights of the 
existing anatomical connections26. This is an extension of the concept 
of effective connectivity27, but where GEC is generative because it uses 
the whole-brain model to adapt the strength of existing anatomical 
connectivity (that is, the effective conductive values of each fiber). 
In contrast to normal symmetrical measures of effective connectiv-
ity (typically using FC), here we use the asymmetrical optimization 
obtained from using the non-reversibility INSIDEOUT method26. Recent 
advances in the analysis of brain-imaging data have shown that the 
thermodynamic concept of the arrow of time (or non-reversibility) 
is a very sensitive and robust measure of the underlying asymmet-
ric information flow26,35–43. This body of research has demonstrated 
that creating a whole-brain model of the arrow of time in empirical 
neuroimaging data can provide access to the generative mechanisms 
underlying hierarchy—which in turn can provide a direct measure of 
the hierarchical reconfiguration over time (Methods).

Figure 1d shows how the hierarchy of the brain state in each session 
can be quantified using the directedness method on the individual GEC. 
This produces the trophic levels for each brain region, that is, where in 
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Fig. 1 | Pipeline for assessing hierarchy in brain states before and after 
pharmacological intervention for depression. a, Neuroimaging resting-
state data were acquired before and after a double-blind phase II randomized 
controlled trial (DB-RCT) comparing psilocybin therapy with escitalopram.  
b, The hierarchy was quantified using a new method measuring the directedness 
of a network based on trophic levels, inspired by previous work in ecology but 
extended to general directed networks. The top panel shows a flat hierarchy 
with low directedness (or trophic coherence), which reflects the low asymmetry 
of the network with the same trophic levels. In contrast, the bottom panel 
shows a strong hierarchy, associated with high directedness (and asymmetry), 
which emerges from the diversity of trophic levels reflecting the many layers 

in the network. c, Whole-brain modeling is then used on individual sessions of 
each patient of neuroimaging resting-state data in the DK80 parcellation. This 
estimates the underlying mechanisms captured by the GEC. d, The hierarchy of 
the brain state in each session can be quantified using the directedness method 
on the individual GEC. This produces the trophic levels for each brain region and 
a global measure of directedness (or trophic coherence). e, For each patient, 
we then estimate the difference in hierarchical organization by subtracting 
the before- from the after-intervention session. This is then used as the basis of 
machine-learning classification and for direct comparisons of the hierarchical 
reconfiguration.

http://www.nature.com/natmentalhealth


Nature Mental Health

Article https://doi.org/10.1038/s44220-024-00298-y

the hierarchy each is placed, as well as the global measure of directed-
ness (or trophic coherence) based on the trophic levels.

Finally, Fig. 1e illustrates the procedure for estimating the differ-
ence in hierarchical organization, which is obtained by subtracting 
the sessions before the pharmacological intervention from after. As 
shown in the following, this is used as the basis of machine learning to 
compare pattern separation based on regional trophic levels and for the 
direct comparison of the hierarchical reconfiguration of directedness.

Machine learning of hierarchical reconfigurations
We used machine learning to establish the significant hierarchical 
reorganization between before and after treatment. To do this, we first 
computed the GEC for both sessions in each patient receiving either 
psilocybin or escitalopram, independent of treatment response. This 
allowed us to compute the trophic levels and directedness before and 
after intervention in each patient. The before and after scan sessions 
for each of the two types of intervention were classified using machine 
learning (Fig. 2a). For classification we used the hierarchical trophic 
levels for each region (for each patient and condition) as input features. 
We sorted the regions according to each region’s statistical significant 
hierarchical trophic level across patients, region by region, using Wil-
coxon 10,000-permutation tests. To estimate with the highest possible 
accuracy, we selected sequentially the minimum numbers of regions 
from the sorted list of statistically significant trophic levels with the 
minimum number of inputs that yielded the largest accuracy. We found 
that the highest accuracy was obtained using 69 regions for the psilocy-
bin treatment arm and six regions for the escitalopram treatment arm. 
Importantly, we trained the support vector machine (SVM) with the 
leave-one-out cross-validation procedure; that is, we randomly chose 
one patient for generalization and the rest for training, repeated, and 
shuffled 1,000 times. Furthermore, we made sure that the training set 
was balanced in terms of number of examples for each class label, and 
randomly selected the patients in each class for each shuffling iteration 
(Methods). The results show significant effects above chance levels with 
an accuracy of 0.89 ± 0.03 (mean ± s.d.) for psilocybin and 0.89 ± 0.02 
for escitalopram. In addition, we also carried out machine learning 
for all 80 regions for both treatments to show that the preselection of 
regions does not affect the results (Supplementary Fig. 5).

Directedness of hierarchical reconfiguration
The overall global hierarchical reconfiguration can be directly quan-
tified using the measure of directedness, which is a global measure 
of hierarchy based on regional trophic levels (Methods). Figure 2b 
shows the significant differences between before and after treatment 
(P < 0.001, paired Wilcoxon test using 10,000 permutations) for both 
the psilocybin and escitalopram treatment arms. Importantly, with 
psilocybin treatment, the directedness significantly decreases, but 
it increases for the escitalopram treatment, reflecting the differen-
tial hierarchical reconfiguration for the two pharmacological inter-
ventions. This demonstrates differential, opposite statistical effect 
responses, whereby the directedness decreases for the psilocybin 
treatment but increases for the escitalopram treatment.

Importantly, the finding of a differential treatment-dependent 
hierarchical reconfiguration was confirmed by additional analyses. 
First, we computed the correlations between changes in Beck Depres-
sion Inventory (BDI)/treatment response (post–pre) for hierarchy 
(changes in directedness post–pre) for the psilocybin and escitalopram 
groups. As shown in Supplementary Fig. 6, this yielded no significance 
for psilocybin (corr: −0.023, P = 0.91 (not significant (NS)), red line) and 
for escitalopram (corr: 0.16, P = 0.50 (NS), blue line). Yet, as expected 
when we combine the two groups, this yields a significant correlation 
of 0.3 (P = 0.049, black line). The results mean that the change in BDI 
score is not predictive for the change in hierarchy for either group, but 
only when combining them. Overall, this shows that treatment is the 
important variable.

Second, further validating this important result, we ran an analysis 
of variance (ANOVA) with three variables: (1) binary variable of whether 
a patient was classified as responder, (2) change in BDI score (post–pre) 
and (3) type of treatment (psilocybin or escitalopram). The results 
confirmed that only the treatment is significant: factor 1 (response): 
F-statistics 0.063, P = 0.81 (NS); factor 2 (BDI change): F-statistics 1.22, 
P = 0.35 (NS); factor 3 (treatment): F-statistics 16.086, P = 0.0013.

We also investigated possible self-reported sex effects using 
multi-way ANOVA of the differences in directedness before and after 
intervention. This showed non-significant effects of sex (P > 0.05) on 
the mean of the differences in directedness (F(1,39) = 3.08, P = 0.087), 
whereas the intervention effect was highly significant (F(1,39) = 33.28, 
P < 0.001).

It is also important to remark that although the interventions 
had different remission rates (based on the BDI: 64% for psilocybin 
and 30% for escitalopram), the main finding of different reconfigura-
tions between the treatment arms is independent of remission rates, 
but based on the significant differential, opposite statistical effect 
responses in the changes in hierarchy after intervention. In the case 
of patients given psilocybin, the mean directedness of the hierarchy 
is decreasing, whereas it increases for patients given escitalopram. 
Furthermore, this reconfiguration in hierarchy is also found at the 
node level, as shown in the new analysis presented in Supplementary 
Fig. 1, which shows the statistical significance of the differential recon-
figuration with differential, opposite statistical effect responses (one 
is positive and the other negative).

We also carried out a rigorous analysis matching patients with 
a similar baseline and change in depression score and tested for 
differential, opposite statistical effect responses. Supplementary  
Fig. 2 shows the changes in directedness for patients with similar  
initial BDI baseline scores (>23) and changes in BDI after and before 
(<−10). The results shows that the mean directedness hierarchy 
decreases for the psilocybin arm (P < 0.05, paired Wilcoxon test using 
10,000 permutations), but increases for the escitalopram arm (P < 0.05, 
paired Wilcoxon test using 10,000 permutations).

More detailed information was obtained from running four dif-
ferent linear mixed-effect models. Supplementary Table 4 provides 
the details of a linear mixed-effect model for paired repeated meas-
ures analysis with a random effect and matching (grouping) patients 

Fig. 2 | Hierarchical reconfiguration following the administration of 
psilocybin and escitalopram. Throughout, the full results are shown for 
psilocybin in the left column and for escitalopram in the right column for 
both responders and non-responders. a, Machine learning of the hierarchical 
organization reflected in the trophic levels was used to classify the scan  
sessions, that is, the brain dynamics before and after the intervention.  
The confusion matrices show the percentage results of the 22 patients treated 
with psilocybin and the 20 patients treated with escitalopram. This gives 
an accuracy of 0.89 ± 0.03 (mean ± s.d.) for psilocybin and 0.89 ± 0.02 for 
escitalopram, revealing a significant level of hierarchical reconfiguration.  
b, The hierarchical reorganization is shown by comparing the directedness  
(or trophic coherence) as a global measure of the hierarchical reconfiguration. 

This shows significant differences between the before and after (paired Wilxocon 
rank test 10,000 permutations, two-sided and Cohen’s d for the effect size; 
psilocybin, ***P = 0.002, d = 1.1; escitalopram, ***P = 0.001, d = 1.4). Importantly, 
the change in directedness goes in opposite directions, reflecting the differential 
hierarchical reconfiguration for the two pharmacological interventions.  
c, The average regional trophic levels are rendered on the brain before and after 
the intervention. The subcortical regions are rendered on four coronal slices  
in Montreal Neurological Institute (MNI) space (y = [−26, −14, −2, −10] mm).  
d, The rendering shows the differences in trophic levels between before and after 
treatment. As can be seen, the effects of the two interventions are very different, 
reflecting the fact that psilocybin mostly increases the hierarchical organization, 
whereas escitalopram causes a general decrease in hierarchical organization.
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according to (1) their BDI baseline, (2) their BDI change (post–pre) 
and (3) their treatment type (psilocybin or escitalopram) to predict 
hierarchy change (directedness change post–pre). For this proce-
dure, we first used k-means clustering to find the optimal silhouette 

and used n = 5 clusters to define the grouping. We thus matched five 
similar groups of participants across the whole group of participants 
and ran the linear mixed-effect model in MATLAB (2022b). The results 
showed an intercept (bias) t-statistic = −0.394 (P = 0.695 (NS)), BDI 
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baseline t-statistic = 0.431 (P = 0.668 (NS)), BDI change t-statistic =  
0.399 (P = 0.692 (NS)) and treatment t-statistic = −5.152 (P < 0.001). 
This highly significant result demonstrates that only the treatment is 
important, without any confounding factors.

Supplementary Table 5 provides the details of a linear mixed model 
of directedness using BDI change as a fixed effect grouped by treat-
ment as the random effect. The results showed an intercept (bias) 
t-statistic = −0.051 (P = 0.96 (NS)) and BDI change t-statistic = 0.409 
(P = 0.68 (NS)). The lack of significance for intercept and BDI change 
when using treatment as the random effect shows that treatment is 
the important factor.

Supplementary Table 6 provides the details of a linear mixed 
model of directedness change using BDI change, BDI baseline, QIDS 
baseline, QIDS change, age, sex, illness duration, medication with-
drawal and medication as a fixed effect grouped by treatment as the 
random effect. As can be seen in the table, none of the results are sig-
nificant and are therefore not confounding factors.

Supplementary Table 7 provides the details of a linear mixed model 
of directedness change using treatment as a fixed effect and using other 
variables as random effects: BDI baseline, QIDS baseline, QIDS change, 
age, sex, illness duration, medication withdrawal and medication. The 
results showed an intercept (bias) t-statistic = 0.526 (P = 0.60 (NS)) 
and treatment t-statistic = −4.08 (P < 0.001). This highly significant 
result demonstrates that only the treatment is important, without any 
confounding factors.

Overall, all these investigations (Fig. 2b, Supplementary Figs. 3,  
4 and 6 and Supplementary Tables 4–7) converge on the fact that the 
differential, opposite statistical effect responses in hierarchy are con-
sistently changed in opposite directions for the psilocybin and escit-
alopram arms. This strongly supports the main finding of a differential 
reconfiguration of hierarchy.

In addition to this hierarchy analysis, we also tested this claim using 
more traditional methods based on FC. We first tested the ability of FC 
(Supplementary Fig. 3a) to distinguish the effects of psilocybin and 
escitalopram before and after intervention. We compared the mean 
across all elements in FC matrices and did not find any significant 
differences between before and after intervention. Second, we tested 
the ability of time-shifted FC (with a shift of 1 repetition time (TR); Sup-
plementary Fig. 3b) using a measure of asymmetry of these matrices 
before and after intervention. In particular, we computed asymmetry 
as the mean of the absolute difference between the respective time-
shifted FC matrix and the transposed matrix. We found a significant 
difference for the psilocybin session (P < 0.05, paired Wilcoxon test 
using 10,000 permutations) but not for the escitalopram session. 
Still, the effect for psilocybin is less statistically significant than what 
we found using the hierarchy measure.

This lack of sensitivity of both alternate measurements is not sur-
prising given that these methods are focused on grand average static, 
spatial correlation and lack sensitivity to temporal dynamics. Even 
more importantly, in the case of FC, this measure is symmetric, meaning 
that FC does not capture the asymmetry intrinsic to hierarchical organi-
zation. On the other hand, the time-shifted FC is a simple but effective 
measure to capture asymmetry. Yet, it only captures static spatial 
correlations across the entire time window. In contrast, the hierarchy 
measure captures the hierarchical organization of spatiotemporal 
dynamics generated from a whole-brain model. It is therefore more 
sensitive to changes for both interventions and, more importantly, 
reveals the differential, opposite statistical effect responses.

Additionally, we tested the power of using our measure of hier-
archical organization to distinguish treatment effects in a relatively 
small sample of patients and repeated these procedures using another 
measure of global brain connectivity (GBC; Methods), which captures 
the functional coupling of each region with the rest of the brain. Sup-
plementary Fig. 4 shows that this measure performs significantly 
worse using GBC than when using hierarchical levels. This poorer 

performance can be seen in the differences in the scatterplots in Sup-
plementary Fig. 4a for GBC and hierarchical levels before and after both 
psilocybin and escitalopram. To further quantify this difference, we 
directly tested the inability of FC for distinguishing treatment effects 
by comparing the individual correlations after versus before treatment: 
psilocybin (P < 0.001, paired Wilcoxon test with 10,000 permutations) 
and escitalopram (P < 0.04, paired Wilcoxon test with 10,000 permuta-
tions) (see the violin plots in Supplementary Fig. 4b).

Regional differences in hierarchical reconfiguration
To achieve a better understanding of the regional changes underlying 
the differential hierarchical reconfiguration for each treatment arm, 
Fig. 2c shows cortical and subcortical renderings of the average trophic 
regional levels (across patients) for before and after treatment with 
psilocybin (left column) and escitalopram (right column). Figure 2d 
shows renderings of the differential trophic levels, demonstrating the 
hierarchical reconfiguration and how the differential effects of the 
two interventions result in strikingly different patterns of regional 
trophic levels. Although the small sample size makes statistical testing 
at the regional level more difficult due to the multiple comparisons, 
Supplementary Table 1 presents quantitative information reporting 
on the top 20% of regions involved in the hierarchical reorganization 
overall in each intervention arm (irrespective of whether responders 
or non-responders). As can be seen, the psilocybin treatment changes 
the hierarchy for a large number of mainly cortical regions, many of 
which have been shown to be part of the global workspace28. The top 
regions include both cortical (left posterior cingulate and left rostral 
anterior cingulate cortices) and subcortical (right hippocampus and 
right amygdala) regions. In contrast, the overall response to escitalo-
pram treatment does not change the hierarchy of cortical regions, but 
only subcortical regions (of which the amygdala, left putamen and 
right hippocampus are found in the global workspace).

In spite of the small sample size, we also carried out rigorous sta-
tistical testing. Supplementary Table 2 shows the results for the full 
psilocybin treatment arm (22 patients), where 61 of 80 regions sur-
vive statistical testing (P < 0.05, paired Wilcoxon test using 10,000 
permutations and false discovery rate (FDR)-corrected for multiple 
comparisons). In contrast, only 4 of 80 regions survive similar statisti-
cal testing for the escitalopram treatment arm (20 patients, P < 0.05, 
paired Wilcoxon test using 10,000 permutations and FDR-corrected 
for multiple comparisons). Please note that this difference in number 
of significant regions between the two treatment arms is also found 
in the classification.

Reconfiguration in responders and non-responders
Importantly, we also found significant differences between respond-
ers and non-responders in the hierarchical reconfigurations of brain 
dynamics following psilocybin and escitalopram treatment. Given the 
potential limitations of statistical testing in the small sample, we used 
machine learning (again with cross-validation; Methods) to quantify the 
significant hierarchical reorganization related to treatment response. 
We used the efficacy of treatment using the amended (revised) Beck 
Depression Inventory (BDI-1A), which captures a broad range of symp-
toms and places emphasis on the cognitive features of depression44. 
For further justification for the use of this measure here, see ref. 45. 
Here we used the classification from Daws and colleagues22, where a 
patient is classified as a responder if they show a significant reduction 
in BDI-1A after treatment (details in ref. 22).

Figure 3a shows the results of using machine learning for test-
ing significantly above chance level accuracies of pattern separa-
tion between responders versus non-responders for each treatment  
arm (0.67 ± 0.05 for psilocybin and 0.69 ± 0.04 for escitalopram, using 
the methods described above). The highest accuracy was obtained 
using five regions for psilocybin and six regions for escitalopram 
treatment.
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We systematically investigated the regional changes underlying 
these different responses. Figure 3b shows renderings of the differ-
ences in trophic levels after and before treatment for psilocybin (left 
column) and escitalopram (right column) for non-responders (left) 
and responders (right). Confirming the significant machine-learning 
pattern separation results, within each treatment the responders and 
non-responders show differences in the regional trophic levels for 
responders versus non-responders. Supplementary Table 3 presents 
quantitative information reporting on the top 20% of regions involved 
in the overall hierarchical reorganization in each intervention arm. 
These results offer some added insights into the treatment mecha-
nisms. In the case of the escitalopram treatment, the results show 
that patients improve if the treatment also affects the hierarchical 
reorganization of cortical regions that could be said to be part of the 
global workspace. Specifically, the following cortical regions of the 
global workspace moved up in hierarchy following treatment: left and 
right posterior cingulate, left rostral anterior cingulate and right rostral 
anterior cingulate cortices. In addition, the subcortical regions (left 
putamen, left nucleus accumbens and right amygdala) of the global 
workspace also moved back up the hierarchy. However, this will need 
to be confirmed in future larger studies.

In the case of the psilocybin, most of the patients responded and so 
show hierarchical changes similar to the general treatment response, 
which is both cortical and subcortical regions of the global workspace 
moving back up the hierarchy. As expected, non-responders do have a 

slightly different response to responders, with prefrontal regions more 
likely to move up the hierarchy.

We note that, due to the small sample size, statistical testing at 
the regional level is difficult due to multiple comparisons. Still, for 
psilocybin responders (18/22), we found 41 regions that were signifi-
cantly different before and after successful treatment (P < 0.05, paired  
Wilcoxon test using 10,000 permutations and FDR-corrected for mul-
tiple comparisons). In escitalopram responders (8/20), there was only 
one surviving region (left STN), which is at the top of the changing 
hierarchy in Supplementary Table 3.

Treatment response can be differentiated and predicted by 
the hierarchical reorganization
Further investigating the treatment response, we show that when 
comparing the directedness of the hierarchical organization in treat-
ment, the after session gives significant differences across patients 
(P < 0.001, paired Wilcoxon test with 10,000 permutations; Fig. 4a). 
In other words, the directedness reveals which intervention a given 
patient has received, confirming the significantly different hierarchi-
cal reorganization linked to the two pharmacological interventions. 
Furthermore, as shown in Fig. 4b, we can also classify the treatment 
response using the regional trophic levels with a high accuracy of 
0.83 ± 0.03 for the pattern-separation machine learning with cross-
validation (Methods). Please note that the training set was carefully 
balanced in terms of number of examples for each class label, and 
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Fig. 3 | Significant differential hierarchical reconfiguration between 
responders and non-responders. Psilocybin results are shown in the left 
column and escitalopram results in the right column. a, The changes in 
hierarchical reorganization were used for machine-learning classification 
of responders versus non-responders. The confusion matrices show the 
percentage results of the 22 patients treated with psilocybin (of which there 
were 18 responders) and the 20 patients treated with escitalopram (of which 
there were eight responders). The results showed significantly above chance 
levels in hierarchical reconfigurations for responders and non-responders in 
both interventions (0.67 ± 0.05 (mean ± s.d.) for psilocybin and 0.69 ± 0.04 for 
escitalopram). b, The renderings show the differences between before and after 

for responders and non-responders. The subcortical regions are rendered on 
four coronal slices in MNI space (y = [−26, −14, −2, −10] mm). As can be seen, there 
are significant differences in the hierarchical reconfiguration between these two 
groups, both between and within psilocybin and escitalopram. The renderings 
show lower precuneus and prefrontal hierarchical levels after treatment in the 
psilocybin responders compared to non-responders, and there is an intriguing 
increase in hierarchical levels of the inferior frontal gyrus for the non-responders. 
Similarly, the brains of the escitalopram responders compare to the full group in 
that regions of the cingulate and regions of the prefrontal cortex have stronger 
hierarchical levels in the responders than in non-responders.

http://www.nature.com/natmentalhealth


Nature Mental Health

Article https://doi.org/10.1038/s44220-024-00298-y

the patients in each class for each shuffling iteration were randomly 
selected. Finally, we were able to predict the treatment response using 
the baseline data (that is, the before escitalopram treatment data). This 
was only done for escitalopram, because this arm, unlike psilocybin, 
had the necessary power, with roughly equal numbers of responders 
and non-responders. Using machine learning with cross-validation,  
Fig. 4c shows a high accuracy of prediction (0.85 ± 0.04). This signifi-
cant prediction is potentially interesting for future clinical applications.

Discussion
We have studied the effects of pharmacological interventions on the 
brain dynamics of MDD patients before and after treatment with either 
psilocybin or escitalopram. Directly addressing our main research ques-
tion, we were able to show that—despite leading to equal improvements 
in depressive symptoms (as measured with BDI-1A)—the two drugs 
work in significantly different ways and show differential, opposite 
statistical effect responses, as indexed by how each reconfigures the 
global functional hierarchy of brain dynamics. In particular, we have 
demonstrated that hierarchical measures of both directedness and 
trophic levels associated with brain dynamics are significantly different 
before and after intervention, as well as different between responders 
and non-responders for both drug types. Our results complement 
previous research showing that there are shared and unique changes in 
brain connectivity following different types of intervention for depres-
sion46. More generally, the framework presented here offers a princi-
pled route to evaluate the effects of any pharmacological intervention 
with before and after empirical brain dynamics data. To generalize the 
results, however, they should be replicated in larger populations and 
for other interventions, but there could be a path for fulfilling the great 
expectations of using neuroimaging for understanding the underlying 
mechanisms of neuropsychiatric disorders and successful treatments32.

Hierarchical reorganization for psilocybin and escitalopram
We found that psilocybin treatment leads to a decrease in the overall  
global measure of directedness of the hierarchy of brain dynamics  
when comparing brain dynamics after versus before treatment  
(Fig. 2b). In contrast, escitalopram leads to an increase in the overall 
global measure of directedness of the hierarchy of brain dynamics.

These differential effects are in line with the known differential 
effects of the pharmacology of the two drugs. Psilocybin is the prod-
rug of psilocin (4-OH-dimethyltryptamine) and has been shown to 
act mainly through the serotonin 2A receptor (5-HT2AR)18,19,47, thereby 

initiating a multi-level plasticity48. Psychedelics works partly through 
5-HT2A receptor agonism leading to an increase in the sensitivity of 
excitatory neurons expressing the receptor, which in turn causes dys-
regulation of spontaneous population-level activity and spike-wave 
decoupling49. Attesting to this, dynamic sensitivity analysis of the sys-
tematic perturbation of whole-brain models has been used to identify 
brain networks that are part of the transition away from a depressive 
brain state following administration of psilocybin50.

In contrast, escitalopram is a member of the most frequently 
prescribed antidepressant drug class, the so-called selective serotonin 
reuptake inhibitors (SSRIs). Unlike psilocybin, which has no appreci-
able affinity or action of the serotonin transporter (5-HTT), SSRIs are 
thought to rely on reuptake blockade at the 5-HTT.

This suggests an overall flattening of the hierarchy for psilocybin 
after administration in MDD patients, which is consistent with the 
evidence from healthy participants on psilocybin and other classic 
psychedelics51,52. Specifically, psychedelics have been shown to broaden 
the repertoire of connectivity states53–57, increase the entropy of rest-
ing-state activity58–61, and enhance the connectivity between central 
high-level networks and the rest of the brain51,60,62,63. More generally, 
the results are consistent with the REBUS theory21 and the anarchic 
brain hypothesis, integrating Friston’s free-energy principle64 with the 
entropic brain hypothesis of Carhart-Harris58,65. Here, the main hypoth-
esis is that psychedelics can bring about a relaxation of the precision of 
high-level priors or ‘beliefs’ (REBUS), allowing (anarchic) bottom–up 
information flow, consistent with ‘anarchic’ (that is, hierarchy-free) 
system dynamics. This theory is consistent with our results showing 
psilocybin treatment leading to a hierarchical reconfiguration and 
general flattening of the hierarchy. In contrast, the increase in directed-
ness of the hierarchical reorganization after escitalopram treatment 
would imply that the responders show a more top–down hierarchical 
organization of their brain dynamics. It is tempting to speculate that 
this top–down organization may also be linked to dampened respon-
sivity in stress circuitry under these drugs66, allowing easier top–down 
control. However, to test this speculation would require a new, carefully 
designed study, for which some progress has already been made67. 
Even so, further work is required to better scrutinize this hypothesis.

The results show that psilocybin and escitalopram work in very 
different ways when used for rebalancing the hierarchical organization 
of the brain dynamics in depression. Both interventions may lead to 
a significant reduction in depressive symptoms, but do so in signifi-
cantly different ways. This was first hypothesized by Carhart-Harris 
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Fig. 4 | Treatment response can be differentiated and predicted by 
hierarchical organization. a, The directedness of the hierarchical organization 
in the session after treatment shows significant differences across patients 
(***P < 0.001, paired Wilcoxon test with 10,000 permutations). b, The machine-
learning classification of the treatment response (using the trophic levels) also 
found that difference between psilocybin versus escitalopram after sessions 
can be classified with 0.83 ± 0.03 (mean ± s.d.) accuracy. The confusion matrices 
show the percentage results of 22 patients treated with psilocybin and 20 

patients treated with escitalopram. c, Equally, machine learning can be used to 
make a prediction of the treatment response for patients on escitalopram. We 
only do this for escitalopram, because the roughly equal numbers of responders 
(eight patients) and non-responders (12 patients) made this possible. The 
confusion matrices show the percentage results for the 20 patients treated with 
escitalopram. This resulted in a significant prediction above chance level and an 
accuracy of 0.85 ± 0.04 (mean ± s.d.).
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and Nutt66, and implied but not proven in the research of Daws and 
colleagues22, who used the same data analysed here but only found 
a change in integration–segregation for psilocybin but not for esci-
talopram, thus missing the differential, opposite statistical effect. 
Crucially, as we have demonstrated here, this differential, opposite 
statistical effect is not revealed using simple symmetric FC measures 
or even asymmetric time-shifted FC, which do not capture the relevant 
temporal dynamics. Fully revealing the hierarchical organization of 
the underlying spatiotemporal dynamics requires the sensitivity of 
our hierarchical method combined with a causal, generative whole-
brain model.

The key argument for causality in connection with whole-brain 
modeling is that removing a ‘causal’ region from the model results 
in a significant inability to maintain the fit to empirical data. This is 
analogous to how lesions are used in animal models, but used now for 
‘in silico’ models. Previously, Deco and colleagues lesioned the top and 
bottom of the hierarchy and showed that only the first lesioning signifi-
cantly changed the fit of the model to the empirical data28. Here, we first 
determine the GEC that allows the whole-brain model to generate the 
best fit to the empirical data. Hence, we know that the regions in this 
network are causally important for generating the functional dynamics.

Regional hierarchical reorganization for treatments
The regional results show that positive depression recovery is linked 
to when both cortical and subcortical regions of the global workspace 
are moving back up in the hierarchy following treatment. However, 
these changes differ in how psilocybin and escitalopram restore the 
orchestration of healthy brain function, and the main mechanisms 
underlying the treatment response for depression involve regional 
hierarchical reconfiguration.

In terms of hierarchical organization at the regional level, psilo-
cybin treatment (Fig. 2c, left column brain rendering) leads to broad 
changes across the whole brain, with multiple regions in the cingulate 
cortex increasing their trophic level when comparing after with before 
the treatment. Similarly, subcortical regions such as the STN, hip-
pocampus and amygdala are also moving up in the hierarchy and drive 
the orchestration to a higher degree than before. In contrast, large parts 
of the prefrontal and temporal cortices decrease their trophic level, 
suggesting that they are moving down the hierarchical organization.

These patterns of hierarchical reconfiguration are very different 
after escitalopram treatment for all patients (Fig. 2c, right column 
brain rendering); in all cortical regions the trophic levels decrease 
from after to before treatment for all patients, and many subcortical 
regions (such as amygdala, putamen, hippocampus, caudate and STN) 
show an increase in trophic levels. This drives the global increase in 
directedness from before to after treatment, irrespective of outcome. 
Importantly, comparing the regional trophic levels for responders 
with non-responders following escitalopram treatment (Fig. 3b, right 
column), the responders show a significantly different pattern, with 
increases of trophic level in parts of cortical as well as subcortical 
regions. These changes in the hierarchical position of brain regions 
are driving the treatment response. In fact, the patients that respond 
to either pharmacological intervention show an increase in the hier-
archical position of both cortical and subcortical regions. Given that 
the trophic hierarchical levels are based on the GEC measure com-
ing from a whole-brain model of the brain dynamics, this implicates 
these brain regions in the healthy transition away from treatment- 
resistant depression.

These findings fit well with previous literature, which has impli-
cated major depression with disturbances in multiple resting-state 
networks, including the SN and DMN, which are known to regulate cog-
nitive control and attention68–71. In particular, the findings also fit well 
with the changes in large-scale FC between networks72,73. Specifically in 
remitted depressed patients, increased FC has been observed between 
the DMN and the dorsal attention network, and also within and between 

networks such as the SN and executive control networks74. There is 
also an emerging literature showing how an increase in activity in the 
DMN is associated with rumination and recurrence of depression75,76.

Interestingly, many of the regions changing with treatment have 
been shown to be part of the global workspace28, which orchestrates 
healthy brain function. This opens up the interesting hypothesis that 
depression is caused by a malfunctioning orchestration of brain dynam-
ics, where there is a partial breakdown in one or more of the brain 
regions at the top of the hierarchy28. This hypothesis may even hold 
for other neuropsychiatric disorders70 and, as such, it would be of 
considerable interest to further test this hypothesis in other datasets.

Predicting outcome using machine learning
Even more relevant for treatment, we were able to demonstrate that 
the trophic hierarchical levels for an individual depressed patient 
at baseline before treatment can be used to predict the outcome of 
escitalopram treatment (Fig. 4c). However, there were too few non-
responders for the psilocybin treatment arm to be able to use this for 
prediction. This finding for escitalopram is potentially exciting but 
will need replication in a much larger dataset to test the true predictive 
value of this finding. The importance of more data can be appreciated 
when comparing this predictive result with the lower accuracy results 
in Fig. 3a, where machine learning was used to measure the accuracy 
in separating the difference between responders and non-responders 
before and after treatment. This lower accuracy runs counter to the 
intuition that more information should lead to higher accuracy than 
the prediction accuracy. Still, in both cases, machine learning performs 
significantly better than chance, although the noise level is clearly 
having a major effect with the relatively low sample size. Hence, in 
future this problem should be further investigated in more appropriate 
large-scale studies with more non-responders.

Potential limitations
Importantly, it should be noted that there are several potential limita-
tions to this study. First, the results here are based on neuroimaging 
using BOLD signals from fMRI and thus carry a number of potential limi-
tations. These include the fact that BOLD signals are indirect measures 
of neural activity77 at a coarse spatial scale of ~1–2 mm3, corresponding 
to ~5 million neurons with diverse properties and functions78,79. This 
heterogeneity of neuronal populations is especially true in the higher-
order brain regions often associated with neuropsychiatric disorders80. 
Equally, another limitation of resting-state fMRI is the significant intra-
individual rest–retest variability, which has been linked to variations 
in a number of different factors including diet, diurnal changes, blood 
pressure and even cognitive load81. Nevertheless, BOLD signals are still 
useful given that they are highly correlated with local field potentials 
and multi-unit activity and thus accurately reflect the activity in local 
cortical circuits78,79. Second, the study has a relatively low sample size, 
which limits the statistical power used for regional analyses. As such, 
the regional results mentioned above are not conclusive but will require 
further study and replication in larger studies.

Conclusion
Overall, the hierarchy of brain dynamics is clearly a very sensitive 
measure of change. This is made possible by recent advances in whole-
brain modeling using a novel thermodynamics-inspired framework26, 
providing the level of non-reversibility (or arrow of time) in brain 
signals35,37,43. This provides the observable for a model-based, direct 
quantification of the asymmetric interactions, which is then quanti-
fied using the trophic framework. The thermodynamic framework 
provides measures of the non-reversibility of brain states and the 
identification of brain regions involved in breaking the balance as well 
as the net fluxes between underlying brain networks before and after 
interventions. In other words, the arrow of time of brain signals can 
provide a powerful new way to identify the cause and effect when the 
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brain is reorganized. Here we have used this framework to identify how 
different pharmacological interventions reorganize brain dynamics 
differently. This has provided insights into the underlying mecha-
nisms of depression and may in time lead to even better interventions. 
The results also confirm the hypothesis that problems with the main 
regions of the global workspace orchestrating brain dynamics could be 
the main cause of neuropsychiatric disorders—consistent with previ-
ous findings and hypotheses70,82. Future larger studies should further 
investigate this hypothesis. We also note that the present whole-brain 
modeling framework could be used for treatment studies using any 
kind of effective intervention, whether pharmacological, electrical 
or behavioral.

Methods
Empirical data
The trial’s design (Fig. 1a) and primary clinical outcomes (clinicaltrials.
gov: NCT03429075) have been documented previously22,23. The clinical 
trial took place at the National Institute for Health Research Imperial 
Clinical Research Facility and received sponsorship from Imperial Col-
lege London. It obtained ethical approval (ID 17/LO/0389) from the NHS 
Research and Imperial College Joint Research and Compliance Office, 
as well as approval from the Health Research Authority and Medicines 
and Healthcare Products Regulatory Agency. This study was carried 
out under a Schedule 1 Drug Licence granted by the UK Home Office. 
Written informed consent was provided by all participants who did not 
receive any financial compensation.

Participants
To be eligible for participation, individuals needed a confirmed diag-
nosis of unipolar MDD from a general practitioner, scoring 16 or higher 
on the 21-item Hamilton Depression Rating scale. Patients were also 
queried about any prior use of psychedelics. Within this trial, 31% of 
patients in the psilocybin group and 24% in the escitalopram group 
reported previous experience with psychedelics. Individuals were 
excluded from the trial if they had an immediate family or personal 
history of psychosis, a physician-assessed risky physical health condi-
tion, a history of serious suicide attempts, a positive pregnancy test or 
contraindications for undergoing an MRI. In addition, individuals with 
contraindications for selective serotonin reuptake inhibitors (SSRIs) 
or previous use of escitalopram were also excluded. It is important to 
note that treatment resistance was not considered as an inclusion or 
exclusion criterion. All eligible patients underwent telephone screen-
ing interviews, provided written informed consent, and underwent 
comprehensive evaluations of their mental and physical medical histo-
ries. Supplementary Table 8 provides the self-reported demographics 
for all patients.

Interventions
Of the 59 recruited patients with MDD, a random number generator 
was used to assign 30 patients to the psilocybin arm and 29 patients to 
the escitalopram arm. Similar to Daws and colleagues22, we excluded 
some of the patients in each arm. Specifically, for the psilocybin arm, 
one patient was excluded for choosing not to take the daily (placebo) 
capsules, and due to the COVID-19 UK lockdown, two patients did not 
attend the post-treatment session; finally, five patients were excluded 
due to excessive fMRI head motion. The remaining 22 patients (mean 
age, 41.9 years, s.d. = 11.0, 14 men and 8 women) were included in the 
psilocybin imaging sample. For the escitalopram arm, four patients 
discontinued due to adverse reactions to escitalopram, one patient 
reported cannabis use, one patient was lost due to the COVID-19 
UK lockdown, and a further three patients were excluded due to 
excessive fMRI head motion. The remaining 20 patients (mean age, 
38.7 years, s.d. = 11.0, 14 men and 6 women) were included in the esci-
talopram imaging sample. Before treatment, all patients underwent 
a baseline resting-state fMRI session with their eyes closed. On the 

first dosing day (DD1), patients received either 25 mg of psilocybin 
(psilocybin arm) or a presumed negligible dose of 1 mg of psilocybin 
(escitalopram arm). Although all patients were informed that they 
would receive psilocybin, they were unaware of the specific dosage 
to ensure blinding. A second dosing day (DD2) took place three weeks 
after DD1, where patients received the same dosage as in the first 
session. There was no crossover in dosages between the two arms. 
Starting from the day after DD1, patients took daily capsules for a 
total of six weeks and one day. In both conditions, patients ingested 
one capsule per day during the initial three weeks, and increased the 
dosage to two capsules per day afterward. The capsule content was 
either an inert placebo (microcrystalline cellulose in the psilocybin 
arm) or escitalopram in the escitalopram arm. In the escitalopram 
arm, patients received 10 mg of escitalopram for the first three weeks 
and a total of 2 × 10 mg (20 mg) thereafter. Blinding was not done in 
the clinical trial upon which the data were based. However, there are 
recent data showing that psychedelic therapy may be less vulner-
able to expectancy biases than previously suspected83. In this study, 
the authors analyzed the clinical data with mixed linear models to 
investigate the association between both escitalopram and psilocy-
bin and pre-treatment efficacy-related expectations, baseline trait 
suggestibility and absorption and therapeutic response. The results 
showed that patients overall had significantly higher expectancy for 
psilocybin relative to escitalopram. Yet, expectancy for escitalopram 
was associated with improved therapeutic outcomes to escitalopram, 
and expectancy for psilocybin was not predictive of the response to 
psilocybin. The BDI remission rates were 64% for the psilocybin arm 
and 30% for the escitalopram arm.

Measuring depression severity
The severity of depression was evaluated using BDI (BDI-1A) scores in 
this study. BDI-1A is a patient-rated assessment tool that encompasses a 
wider range of symptoms and places particular emphasis on the cogni-
tive aspects of depression44. Baseline BDI assessments were conducted 
before the first dosing day (DD1), and subsequent evaluations took 
place at two, four and six weeks after DD1. It is important to note that 
BDI was considered a secondary outcome measure for this study, as 
indicated by its registration on ClinicalTrials.gov (NCT03429075). The 
primary outcome measure (QIDS-SR-16) was found not to be different 
between the two intervention arms23.

MRI acquisition
Imaging of the brain was carried out with a 3T Siemens Tim Trio set-up 
at Invicro. For the acquisition of brain anatomy, we used the recom-
mended MPRAGE parameters from Alzheimer’s Disease Neuroimaging 
Initiative, Grand Opportunity (ADNI-GO56): 1-mm isotropic voxels; 
160 sagittal slices; 256 × 256 in-plane field of view; echo time (TE), 
2.98 ms; TR, 2,300 ms; generalized autocalibrating partially paral-
lel acquisitions (GRAPPA) acceleration, 2; flip angle, 9°; bandwidth, 
240 Hz per pixel.

For the acquisition of functional data, we collected eyes-closed 
resting-state fMRI data using T2*-weighted echo-planar images. We 
used a 32-channel head coil to acquire 480 volumes in ~10 min: 3-mm 
isotropic voxels; 44 axial slices; TE, 30 ms; TR, 1,250 ms; GRAPPA accel-
eration, 2; flip angle, 70°; bandwidth, 2,232 Hz per pixel.

Parcellations
All neuroimaging data were processed using the DK80 cortical parcel-
lation28, which is a combination of the Mindboggle-modified Desikan–
Killiany parcellation84 with a total of 62 cortical regions (31 regions 
per hemisphere)85 and 18 subcortical regions, that is, nine regions per 
hemisphere: hippocampus, amygdala, subthalamic nucleus (STN), 
globus pallidus internal segment (GPi), globus pallidus external seg-
ment (GPe), putamen, caudate, nucleus accumbens and thalamus. 
We chose this parcellation given our previous work showing that this 
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is the best compromise between spatial accuracy and computational 
load for whole-brain modeling when measuring brain hierarchy in 
neuropsychiatric disorders28. However, we note that there is no current 
consensus about what is the best spatial parcellation scheme, as shown 
by the paper by Eickhoff and colleagues reviewing the literature on the 
topographic organization of the brain86.

fMRI data preprocessing
The imaging data were preprocessed using an in-house pipeline using 
the FMRIB Software Library (FSL)87, Analysis of Functional NeuroImages 
(AFNI)88, Freesurfer89 and Advanced Normalization Tools90 packages, 
as described in detail in a previous publication22. Briefly, this pipeline 
consists of de-spiking, slice time correction, motion correction, brain 
extraction, rigid body registration to anatomical scans, nonlinear tem-
plate registration, scrubbing, bandpass filtering, regression with six 
realignment motion regressors, three tissue signal regressors, draining 
veins and local white matter. Daws and colleagues were careful to rule 
out any systematic bias from akathisia or similar movement artifacts, 
as also shown in their supplementary materials and in particular their 
supplementary table 1 showing the head motion descriptive statistics22. 
The DK80 parcellated timeseries used here for hierarchical analysis 
was extracted from this preprocessed data.

Hopf whole-brain model
In this study we utilized a Stuart–Landau oscillator model to represent 
the local dynamics of each brain region. This model, which corresponds 
to the normal form of a supercritical Hopf bifurcation, is widely used 
for investigating the transition from noisy to oscillatory dynamics91. 
Previous research has successfully employed whole-brain Hopf models 
to replicate important characteristics of brain dynamics observed in 
electrophysiology92,93, magnetoencephalography94 and fMRI95. The full 
mathematical description of the Hopf model and the linearization of 
this model are available in Supplementary Information.

Model optimization—GEC
To fit the model to the empirical data (BOLD fMRI of each participant 
in each brain state), we used a pseudo-gradient procedure to opti-
mize the coupling connectivity matrix C, where the starting point 
was the standard structural connectivity matrix computed from the 
diffusion MRI data from a specially optimized state-of-the-art Human 
Connectome Project (HCP) protocol28. The final optimized matrix 
comprises the effective conductivity values for each anatomical exist-
ing pair connections instead of just the diffusion MRI (dMRI)-based 
density of fibers. Specifically, we iteratively compared the output of 
the model with the empirical measures of the functional correlation 
matrix (FCempirical), that is, the normalized covariance matrix of the 
functional neuroimaging data.

Additionally, to fit the whole-brain level of non-reversibility, we 
define the forward and reversal matrices of time-shifted correlations 
for the forward version and respective reversed backward version of 
a multidimensional timeseries for the different brain regions. This 
allows us to compute the forward and reversal matrices, expressing 
the functional causal dependencies between the different variables 
for the forward and artificially generated reversed backward version 
of a multidimensional system. We compared the output of the model 
with the forward normalized τ time-shifted covariances (FSempirical

forward (τ)). 
These normalized time-shifted covariances were derived by shifting 
the empirical covariance matrix KSempirical

forward (τ)  and dividing each 

pair (i, j) by √KSempirical
forward, ii(0)KS

empirical
forward, jj(0) . It is worth noting that these 

normalized time-shifted covariances break the symmetry of the 
couplings, resulting in an enhanced fitting quality96. To fully capture 
the asymmetry, we fit the non-reversibility by performing the same 
procedure on the reversed normalized τ time-shifted covariances 
(FSempirical

reversal (τ)).

Using a heuristic pseudo-gradient algorithm, we set α = ς = 0.00001 
and updated C until achieving a fully optimized fit. More specifically, 
the updating uses the following form:

Cij = Cij + α (FCempirical
ij − FCmodel

ij )

+ς ((FSempirical
forward, ij (τ) − FSempirical

reversal, ij (τ))

− (FSmodel
forward, ij (τ) − FSmodel

reversal, ij (τ)))

(1)

where FSmodel
forward, ij(τ)  is defined similarly for forward FSempirical

forward, ij(τ)  and 
FSmodel

reversal, ij(τ) is defined for reversal FSempirical
reversal, ij(τ). In other words, for the 

forward version, it is given by the first N rows and columns of the simu-
lated τ time-shifted covariances KSmodel

forward(τ)  normalized by dividing 

each pair (i, j) by √KSmodel
forward, ii(0)KS

model
forward, jj(0) , where KSmodel

forward(τ)  is the 

shifted simulated covariance matrix computed as

KSmodel
forward(τ) = exp (τJ )K (2)

where the J matrix is the Jacobian of the linearized Hopf model evalu-
ated at the fixed point (Supplementary Information). It is important 
to note that KSmodel

forward(0) = K . The same procedure was applied to the 
reversal version of FSmodel

reversal, ij(τ). The model is executed iteratively with 
the updated C until a stable and convergent fit is achieved. We use this 
method in two stages: (1) at the group level (for the before and after for 
each of the two treatment types); (2) this is then used as the starting 
point for individual optimization. At the group level, we initialize C as 
the anatomical connectivity data obtained through probabilistic trac-
tography from dMRI (Methods). The update process only modifies the 
known existing connections from this matrix within each hemisphere, 
following the anatomical connections. However, an exception is made 
for homolog connections between corresponding regions in both 
hemispheres, as tractography tends to be less accurate in capturing 
this type of connectivity. For the Stuart–Landau model, as mentioned 
above, we set α = ς = 0.00001 and continue the algorithm until conver-
gence is attained. In each iteration, we compute the model results by 
averaging over multiple simulations corresponding to the number  
of participants. In summary, we refer to the optimized matrix C as  
the GEC26.

Briefly, the main difference between the GEC and other examples 
of effective connectivity such as dynamic causal modeling (DCM)27, 
Granger causality97 and transfer entropy28,98–102 is the anatomically 
constrained nature of GEC. In most implementations of DCM, Granger 
and transfer entropy, the underlying brain anatomy is not constraining 
the results. Furthermore, both methods measure some form of causal-
ity from the timeseries but do not use a generative form of causality. In 
our GEC, this generative aspect is explicitly given by brain anatomical 
constraints and whole-brain modeling. Importantly, this modeling 
typically allows for an estimation across the whole brain rather than 
only for the limited amount of regions given by DCM (up to ten regions 
in recent implementations), although recent work has applied the 
framework to the whole brain103–105.

Defining GBC
For each session in each patient, we computed the GBC, given by

GBCi =
1
N

N
∑
j=1

FCij (3)

Functional hierarchy metrics
To investigate functional hierarchical organization following phar-
macological treatments in MDD patients, we adapted the hierarchy 
measures of directedness and trophic levels in directed networks24. 
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This provides both the hierarchical node-level information (trophic 
level) and the global information (directedness, or trophic coherence), 
and here we apply this to the directed graph obtained from the GEC 
matrix, the individualized optimized matrix C given by equation (1).

Trophic levels
The GEC matrix defines a graph of N nodes connected by weighted 
edges determined by the elements of C. For each node n in the graph, 
we introduce the concepts of in-weight (d in

n ), by summing the m col-
umns of C, and out-weight (dout

n ), by summing the m rows of C, defined 
as follows:

d in
n = ∑

m
Cnm (4)

dout
n = ∑

m
Cmn (5)

We define the total weight of node n as un by

un = d in
n + dout

n (6)

Furthermore, we define the imbalance for node n as vn, represent-
ing the difference between the flow into and out of the node by

vn = d in
n − dout

n (7)

The (weighted) graph-Laplacian operator Λ on vector h is given by

Λ = diag(u) − C − CT (8)

Consequently, the enhanced concept of trophic level corresponds 
to the solution h of the linear system of equations

Λh = v (9)

Here each component of the vector h corresponds to the trophic 
level in a given brain region. Importantly, while the operator Λ is sym-
metric, the asymmetry of the network is evident in the imbalance 
vector v.

Directedness (trophic coherence) of a network
Once the hierarchy level h has been established, we can assess the net-
work’s global directionality by computing its directedness (or trophic 
coherence) using the equation

F0 = 1 −
∑mn Cmn (hn − hm − 1)2

∑mn Cmn
(10)

A network is considered maximally coherent when F0 = 1, whereas it 
is regarded as incoherent when F0 = 0. The trophic coherence is a graph 
theoretical measure of hierarchical organization. Elevated values of 
trophic coherence indicate a greater degree of hierarchical organiza-
tion. Using the GEC obtained through the whole-brain model-based 
framework, we computed hierarchical levels for each region in our 
parcellation and trophic coherence characterizing the global level of 
hierarchical organization.

SVM for pattern separation and classification
Both pattern separation and classification were conducted using a 
support vector machine (SVM) with Gaussian kernels as implemented 
by the function fitcecoc in MATLAB (2022b), returning a full, trained, 
two-class, error-correcting output codes model with the predictors in 
the input with class labels. We used the one-versus-one coding design 
with K = 2 as the number of unique class labels in K(K − 1)/2 binary  
SVM models.

The output of the SVM was two classes, which correspond to (1) 
after versus before, (2) responder versus non-responder or (3) psilo-
cybin versus escitalopram treatment. The input features used for 
classification were hierarchical trophic levels (for each patient and 
condition). We used a selection of inputs by statistically comparing 
hierarchical trophic levels across patients, region by region, using a 
Wilcoxon 10,000 permutation tests and sorting these. We selected the 
minimum number of inputs that yielded the largest accuracy. The SVM 
was trained using the leave-one-out cross-validation procedure; that 
is, we randomly chose one patient for generalization and used the rest 
for training. This was repeated and shuffled 1,000 times. Furthermore, 
the training set was balanced in terms of number of examples for each 
class label, while randomly selecting the patients in each class for each 
shuffling iteration.

To estimate the highest possible accuracy, we systematically 
computed the accuracy by sequentially selecting different numbers 
of regions from the sorted list of statistically significant trophic lev-
els mentioned above. In terms of the minimum number of regions 
used for the pattern separation in Fig. 2a, the highest accuracy was 
obtained for 69 regions for psilocybin and six regions for escitalopram 
treatment before versus after. In Fig. 3a, for the pattern separation 
between responders versus non-responders, the highest accuracy was 
obtained using five regions for psilocybin and six regions for escitalo-
pram treatment. In Fig. 4b, the highest accuracy comparing treatment 
was obtained using 33 regions. In Fig. 4c, the highest accuracy was 
obtained using five regions for the prediction of treatment response.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All requests for raw and analysed data and materials are promptly 
reviewed by R.L.C.-H., the chief investigator on the original work. 
Patient-related data not included in the paper were generated as part 
of clinical trials and may be subject to patient confidentiality. All data 
needed to evaluate the conclusions in the paper are present in the paper 
and/or Supplementary Information.

Code availability
Code used to analyze the data is available from https://github.com/
decolab/Psilodep2.
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