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Effective interventions for neuropsychiatric disorders may work

® Check for updates by rebalancing the brain’s functional hierarchical organization.
Here we directly investigated the effects of two different serotonergic
pharmacological interventions on functional brain hierarchy in major
depressive disorder in a two-arm double-blind phase Il randomized
controlled trial comparing psilocybin therapy (22 patients) with
escitalopram (20 patients). Patients with major depressive disorder
received either 2 x 25 mg of oral psilocybin, three weeks apart, plus
six weeks of daily placebo (‘psilocybin arm’) or 2 x 1 mg of oral psilocybin,
three weeks apart, plus six weeks of daily escitalopram (10-20 mg;
‘escitalopram arm’). Resting-state functional magnetic resonance
imaging scans were acquired at baseline and three weeks after the
second psilocybin dose (NCT03429075). The brain mechanisms
were captured by generative effective connectivity, estimated from
whole-brain modeling of resting state for each session and patient.
Hierarchy was determined for each of these sessions using measures
of directedness and trophic levels on the effective connectivity,
which captures cycle structure, stability and percolation. The results
showed that the two pharmacological interventions created significantly
different hierarchical reconfigurations of whole-brain dynamics with
differential, opposite statistical effect responses. Furthermore, the use
of machinelearning revealed significant differential reorganization of
brain hierarchy before and after the two treatments. Machine learning was
also able to predict treatment response with anaccuracy of 0.85 + 0.04.
Overall, the results demonstrate that psilocybin and escitalopram work in
different ways for rebalancing brain dynamics in depression. This suggests
the hypothesis that neuropsychiatric disorders could be closely linked
tothe breakdown inregions orchestrating brain dynamics from the top of
the hierarchy.
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Neuropsychiatric disorders are devastating, incurring significant dis-
ability and stigma for individuals and a serious and growing burden
forsociety”. Major depressive disorder (MDD) has become pervasive.
Amajor contributor to the yearslost to disability worldwide, in terms
of the burden of disease, by 2030 MDD is predicted to become the
largest contributor’. Adding to this problem, antidepressant drugs
show modest efficacy*’, have unpleasant side effects that impact
treatment adherence® and are associated with high relapse rates’.
Problems with current treatments and the scarcity of reliable animal
models mean that new research strategies are needed to treat neu-
ropsychiatric disorders®’. Yet, at the present time, it is not clear how
brain dynamics change when patients get better following pharma-
cologicalintervention.

Neuroimaging has identified abnormal brain dynamicsin depres-
sion'", with changes linked primarily to higher-order brain networks
including the default mode network (DMN), executive network (EN) and
salience network (SN)"'2, Researchin healthy individuals has associated
these networks with higher-order functioning, including executive con-
troland attentional switching®, which are often impaired in depressed
patients™. There have also been neuroimaging studies investigating
the effective connectivity in depression associated with treatment
response™ . Successful pharmacological intervention for depres-
sionmust therefore be linked to arebalancing of these dynamics. One
candidate mechanismis therole of the serotonin 2A (5-HT2A) receptor
subtype, which is closely associated with serotonergic psychedelic
drugssuchas psilocybin'®'’, The spatial distribution of 5-HT2A recep-
tors overlaps with the DMN, EN and SN?°. It has been hypothesized in
the ‘relaxed beliefs under psychedelics’ (REBUS) theory* that psych-
edelics canbring about arelaxation of the precision of high-level priors
or ‘beliefs’, allowing bottom-up rather than hierarchical top-down
information flow, whichis consistent with more hierarchy-free system
dynamics, suggesting a hierarchical reconfiguration of brain dynam-
ics”. However, a full whole-brain quantification of hierarchical process-
ing has not yet been attempted.

In this Article, the main aim is to study the effects of pharmaco-
logicalintervention on brain dynamics andin particular to determine
how this affects the hierarchy of brain processing associated with two
serotonergic pharmacological interventions given to patients with
treatment-resistant depression. To answer this research question, we
leveraged adouble-blind phase Il randomized controlled trial®>, where
resting-state functional magnetic resonance imaging (fMRI) scans at
baseline and after treatment were obtained from all patients*. To best
quantify the changes in brain dynamics, we implemented a sensitive
measure of hierarchy, inspired by work in ecology capturing the hier-
archical relationships between plants, herbivores and carnivoresin a
food web. The method uses the concept of trophic levels for each node
inadirected graph, which canbe thought of as the ‘height’ of anodein
the hierarchy*. Aflat hierarchy is characterized by equal trophiclevels
and low directedness, which reflects low asymmetry in a network. In
contrast, a strong hierarchy is associated with high directedness and
strong asymmetric connections ina many-layered network. This meas-
ure of directedness (also called trophic coherence) has beenrelated to
other network properties, such as cycle structure, stability, normality
and percolation®.

This hierarchy measure provides the global level of directedness
and regional trophic levels, which we applied to the graph of the gen-
erative effective connectivity (GEC) matrix*. This was estimated from
whole-brain modeling of the resting state for each session of each
patient. The GEC is an extension of the classic concept of effective
connectivity”, but generative in the sense that the GEC is created
from a whole-brain model of empirical resting-state data, where the
strengths of existing anatomical connectivity are adapted iteratively
until best fit, thus providing amechanistic explanation of the resting-
state data. This asymmetric measure of functional brain connectivity
isfundamental for assessing hierarchy, while other simpler measures

suchas functional connectivity (FC) are not suitable because they are,
by definition, symmetric.

Theoverall result was that the two pharmacological interventions
gaverise tosignificantly different hierarchical reconfigurations follow-
ing treatment, with differential, opposite statistical effect responses.
In other words, we found significant differences between measures
of both directedness and the trophic level, before and after interven-
tion. These differences were found both from direct statistical tests
and when using machine learning to measure the degree of pattern
separation. Furthermore, we also found significant differences in
trophic levels when comparing responders with non-responders for
each pharmacological intervention. Importantly, pharmacological
interventions were found to work best when select cortical and sub-
corticalregionsinthe so-called ‘global workspace’ were re-established
asbeing near the top of the hierarchy®®. These results strongly suggest
that the psilocybin and escitalopram workin very different ways when
used for rebalancing the hierarchical organization of braindynamicsin
depression. Ingeneral, the research presented here offersaprincipled
route to evaluate the effects of pharmacological intervention based
on empirical brain dynamics data. Many obstacles remain, including
replication of the results in a much larger population and for other
interventions, but the results show potential for fulfilling the great
expectations of using neuroimaging for understanding the underlying
mechanisms of neuropsychiatric disorders.

Results

We addressed the main research question of how pharmacological
interventions affect brain dynamics by assessing hierarchical recon-
figurationinthebrain statein MMD patients enrolled in adouble-blind
phasellrandomized controlled trial comparing two drugs (psilocybin
and escitalopram)®. In this study, as shown in Fig. 1a, neuroimaging
resting-state datawere acquired before and after the pharmacological
intervention (details of the trial are provided in Methods). We used the
data for these two sessions six weeks apart to quantify the effects on
global directedness and regional trophic levels on the brain dynamics
following either intervention.

Quantifying hierarchy in brain states

To reveal the spatiotemporal hierarchical organization of the brain
dynamics for the two pharmacological interventions, weimplemented
amethod measuring the directedness and trophic levels of a network
based on previous work in ecology? and extended to general directed
networks?!. This measure of hierarchy is very robust and has been used
inmany other fields; ithasbeen described as ‘upstreamness’in econom-
ics’’andis akey ingredientin the construction of SinkRank, a measure
of contribution to systemic risk®'.

Foragivendirected network, thismethod provides both the hier-
archical, node-level information (trophic level) and the global infor-
mation (the directedness, or trophic coherence). In other words, the
trophic level provides a measure of where a node sits in the hierarchy
ofadirected network. Inecology, low trophiclevels would be assigned
toplants, and high trophiclevel nodes would be assigned to carnivores,
giventhatenergy flows up the food web from low to high trophiclevels.
Our implementation of the hierarchy methods uses the recent exten-
sion from ref. 24 to the standard definitions of trophic level, which
allows the method to overcome the limitations of requiring a basal
node (thatis,anode with noincoming edges) and taking into account
reverse flow. As a result, this optimized method is even more robust,
asit captures aspects of related network measures of stability, cycles
and normality.

We thus use a well-established method to measure the spatiotem-
poral hierarchical organization of brain dynamics. Figure 1b presents
a cartoon illustrating the trophic levels and directedness measures
for flat and hierarchical networks. As can be seen in the top panel,
aflat hierarchy has approximately equal trophic levels, resulting in
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Fig. 1| Pipeline for assessing hierarchy in brain states before and after
pharmacological intervention for depression. a, Neuroimaging resting-
state data were acquired before and after a double-blind phase Il randomized
controlled trial (DB-RCT) comparing psilocybin therapy with escitalopram.

b, The hierarchy was quantified using anew method measuring the directedness
ofanetwork based on trophiclevels, inspired by previous work in ecology but
extended to general directed networks. The top panel shows a flat hierarchy
with low directedness (or trophic coherence), which reflects the low asymmetry
ofthe network with the same trophic levels. In contrast, the bottom panel
shows astrong hierarchy, associated with high directedness (and asymmetry),
which emerges from the diversity of trophic levels reflecting the many layers
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inthe network. ¢, Whole-brain modeling is then used on individual sessions of
each patient of neuroimaging resting-state data in the DK80 parcellation. This
estimates the underlying mechanisms captured by the GEC. d, The hierarchy of
the brain state in each session can be quantified using the directedness method
on theindividual GEC. This produces the trophic levels for each brain region and
aglobal measure of directedness (or trophic coherence). e, For each patient,

we then estimate the difference in hierarchical organization by subtracting

the before- from the after-intervention session. This is then used as the basis of
machine-learning classification and for direct comparisons of the hierarchical
reconfiguration.

low directedness and reflecting the low asymmetry of the network.
This is not the case for a strong hierarchy, which is associated with
high directedness and consequently strong asymmetric connections.
Inthelatter case, the diversity of trophic levels reflects that the network
contains many hierarchical layers and an overall direction pointing
from the lowest to the highest.

To estimate the functional hierarchy of a given brain state, we
applied this method to the network produced by whole-brainmodeling
of a patient’s individual resting state in the DK8O parcellation®. This
network captures the underlying mechanisms generating the resting-
state dynamics™. Inbrief, whole-brain modeling combines the anatomi-
cal connectivity with local dynamics to fit the dynamics of empirical
neuroimaging data****. The local dynamics can be simulated using,
for example, spiking, dynamical mean field and Hopf local regional
models to fit many different empirical observables. Overall, the best
fit is obtained with the Hopf model, so we chose to fit this model to
the model-free observable of non-reversibility of the neuroimaging
data®**~¥, More specifically, Fig. 1c shows the procedure for fitting a
whole-brainmodel, initially using the anatomical connectivity and then

iteratively adjusting a GEC, whichis givenas asymmetric weights of the
existing anatomical connections®. This is an extension of the concept
of effective connectivity”, but where GEC is generative because it uses
the whole-brain model to adapt the strength of existing anatomical
connectivity (that is, the effective conductive values of each fiber).
In contrast to normal symmetrical measures of effective connectiv-
ity (typically using FC), here we use the asymmetrical optimization
obtained from using the non-reversibility INSIDEOUT method™. Recent
advances in the analysis of brain-imaging data have shown that the
thermodynamic concept of the arrow of time (or non-reversibility)
is a very sensitive and robust measure of the underlying asymmet-
ric information flow?**~**, This body of research has demonstrated
that creating a whole-brain model of the arrow of time in empirical
neuroimaging data can provide access to the generative mechanisms
underlying hierarchy—which in turn can provide a direct measure of
the hierarchical reconfiguration over time (Methods).

Figure 1d shows how the hierarchy of the brain state in each session
canbe quantified using the directedness method on the individual GEC.
This producesthe trophiclevels for each brainregion, thatis, wherein
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the hierarchy eachis placed, as well as the global measure of directed-
ness (or trophic coherence) based on the trophic levels.

Finally, Fig. 1eillustrates the procedure for estimating the differ-
ence in hierarchical organization, which is obtained by subtracting
the sessions before the pharmacological intervention from after. As
shownin the following, thisis used as the basis of machine learning to
compare patternseparation based on regional trophiclevels and for the
direct comparison of the hierarchical reconfiguration of directedness.

Machine learning of hierarchical reconfigurations

We used machine learning to establish the significant hierarchical
reorganization between before and after treatment. To do this, we first
computed the GEC for both sessions in each patient receiving either
psilocybin or escitalopram, independent of treatment response. This
allowed us to compute the trophiclevels and directedness before and
after intervention in each patient. The before and after scan sessions
foreach of the two types of intervention were classified using machine
learning (Fig. 2a). For classification we used the hierarchical trophic
levels for eachregion (for each patient and condition) asinput features.
We sorted the regions according to each region’s statistical significant
hierarchical trophiclevel across patients, region by region, using Wil-
coxon10,000-permutation tests. To estimate with the highest possible
accuracy, we selected sequentially the minimum numbers of regions
from the sorted list of statistically significant trophic levels with the
minimum number of inputs that yielded the largest accuracy. We found
that the highest accuracy was obtained using 69 regions for the psilocy-
bintreatmentarmandsix regions for the escitalopram treatmentarm.
Importantly, we trained the support vector machine (SVM) with the
leave-one-out cross-validation procedure; thatis, we randomly chose
one patient for generalization and the rest for training, repeated, and
shuffled1,000 times. Furthermore, we made sure that the training set
wasbalanced interms of number of examples for each class label, and
randomly selected the patientsineach class for each shuffling iteration
(Methods). The results show significant effects above chance levels with
anaccuracy of 0.89 + 0.03 (mean + s.d.) for psilocybin and 0.89 + 0.02
for escitalopram. In addition, we also carried out machine learning
for all 80 regions for both treatments to show that the preselection of
regions does not affect the results (Supplementary Fig. 5).

Directedness of hierarchical reconfiguration

The overall global hierarchical reconfiguration can be directly quan-
tified using the measure of directedness, which is a global measure
of hierarchy based on regional trophic levels (Methods). Figure 2b
shows thesignificant differences between before and after treatment
(P<0.001, paired Wilcoxon test using 10,000 permutations) for both
the psilocybin and escitalopram treatment arms. Importantly, with
psilocybin treatment, the directedness significantly decreases, but
itincreases for the escitalopram treatment, reflecting the differen-
tial hierarchical reconfiguration for the two pharmacological inter-
ventions. This demonstrates differential, opposite statistical effect
responses, whereby the directedness decreases for the psilocybin
treatment but increases for the escitalopram treatment.

Importantly, the finding of a differential treatment-dependent
hierarchical reconfiguration was confirmed by additional analyses.
First, we computed the correlations between changes in Beck Depres-
sion Inventory (BDI)/treatment response (post-pre) for hierarchy
(changesindirectedness post-pre) for the psilocybin and escitalopram
groups. Asshownin Supplementary Fig. 6, this yielded no significance
for psilocybin (corr:—0.023, P= 0.91 (not significant (NS)), red line) and
for escitalopram (corr: 0.16, P= 0.50 (NS), blue line). Yet, as expected
when we combine the two groups, this yields a significant correlation
of 0.3 (P=0.049, black line). The results mean that the change in BDI
scoreis not predictive for the change in hierarchy for either group, but
only when combining them. Overall, this shows that treatment is the
important variable.

Second, further validating thisimportant result, we ran an analysis
of variance (ANOVA) with three variables: (1) binary variable of whether
apatient was classified as responder, (2) change in BDIscore (post—pre)
and (3) type of treatment (psilocybin or escitalopram). The results
confirmed that only the treatment is significant: factor 1 (response):
F-statistics 0.063, P= 0.81(NS); factor 2 (BDI change): F-statistics 1.22,
P=0.35(NS); factor 3 (treatment): F-statistics 16.086, P= 0.0013.

We also investigated possible self-reported sex effects using
multi-way ANOVA of the differences in directedness before and after
intervention. This showed non-significant effects of sex (P> 0.05) on
the mean of the differencesin directedness (F(1,39) =3.08,P=0.087),
whereas the intervention effect was highly significant (F(1,39) = 33.28,
P<0.001).

It is also important to remark that although the interventions
had different remission rates (based on the BDI: 64% for psilocybin
and 30% for escitalopram), the main finding of different reconfigura-
tions between the treatment arms is independent of remission rates,
but based on the significant differential, opposite statistical effect
responses in the changes in hierarchy after intervention. In the case
of patients given psilocybin, the mean directedness of the hierarchy
is decreasing, whereas it increases for patients given escitalopram.
Furthermore, this reconfiguration in hierarchy is also found at the
node level, as shown in the new analysis presented in Supplementary
Fig.1, which shows the statistical significance of the differential recon-
figuration with differential, opposite statistical effect responses (one
is positive and the other negative).

We also carried out a rigorous analysis matching patients with
a similar baseline and change in depression score and tested for
differential, opposite statistical effect responses. Supplementary
Fig. 2 shows the changes in directedness for patients with similar
initial BDI baseline scores (>23) and changes in BDI after and before
(<-10). The results shows that the mean directedness hierarchy
decreases for the psilocybin arm (P < 0.05, paired Wilcoxon test using
10,000 permutations), butincreases for the escitalopramarm (P < 0.05,
paired Wilcoxon test using 10,000 permutations).

More detailed information was obtained from running four dif-
ferent linear mixed-effect models. Supplementary Table 4 provides
the details of a linear mixed-effect model for paired repeated meas-
ures analysis with a random effect and matching (grouping) patients

Fig. 2| Hierarchical reconfiguration following the administration of
psilocybin and escitalopram. Throughout, the full results are shown for
psilocybinin the left column and for escitalopramin the right column for
both responders and non-responders. a, Machine learning of the hierarchical
organization reflected in the trophic levels was used to classify the scan
sessions, thatis, the brain dynamics before and after the intervention.

The confusion matrices show the percentage results of the 22 patients treated
with psilocybin and the 20 patients treated with escitalopram. This gives
anaccuracy of 0.89 + 0.03 (mean = s.d.) for psilocybin and 0.89 + 0.02 for
escitalopram, revealing a significant level of hierarchical reconfiguration.

b, The hierarchical reorganization is shown by comparing the directedness
(or trophic coherence) as aglobal measure of the hierarchical reconfiguration.

This shows significant differences between the before and after (paired Wilxocon
rank test 10,000 permutations, two-sided and Cohen’s d for the effect size;
psilocybin, **P=0.002, d =1.1; escitalopram, **P=0.001, d = 1.4). Importantly,
the change in directedness goes in opposite directions, reflecting the differential
hierarchical reconfiguration for the two pharmacological interventions.

¢, The average regional trophic levels are rendered on the brain before and after
theintervention. The subcortical regions are rendered on four coronal slices
inMontreal Neurological Institute (MNI) space (y = [-26, -14, -2, -10] mm).

d, The rendering shows the differences in trophic levels between before and after
treatment. As can be seen, the effects of the two interventions are very different,
reflecting the fact that psilocybin mostly increases the hierarchical organization,
whereas escitalopram causes a general decrease in hierarchical organization.
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according to (1) their BDI baseline, (2) their BDI change (post-pre)
and (3) their treatment type (psilocybin or escitalopram) to predict
hierarchy change (directedness change post-pre). For this proce-
dure, we first used k-means clustering to find the optimal silhouette
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baseline ¢-statistic = 0.431 (P = 0.668 (NS)), BDI change t-statistic =
0.399 (P=0.692 (NS)) and treatment ¢-statistic = -5.152 (P < 0.001).
This highly significant result demonstrates that only the treatment is
important, without any confounding factors.

Supplementary Table 5 provides the details of alinear mixed model
of directedness using BDI change as a fixed effect grouped by treat-
ment as the random effect. The results showed an intercept (bias)
t-statistic =—0.051 (P=0.96 (NS)) and BDI change t-statistic = 0.409
(P=0.68 (NS)). The lack of significance for intercept and BDI change
when using treatment as the random effect shows that treatment is
theimportant factor.

Supplementary Table 6 provides the details of a linear mixed
model of directedness change using BDI change, BDI baseline, QIDS
baseline, QIDS change, age, sex, illness duration, medication with-
drawal and medication as a fixed effect grouped by treatment as the
random effect. As can be seen in the table, none of the results are sig-
nificant and are therefore not confounding factors.

Supplementary Table 7 provides the details of alinear mixed model
of directedness change using treatment as afixed effect and using other
variables asrandom effects: BDI baseline, QIDS baseline, QIDS change,
age, sex, illness duration, medication withdrawal and medication. The
results showed an intercept (bias) ¢-statistic = 0.526 (P=0.60 (NS))
and treatment ¢-statistic = —4.08 (P < 0.001). This highly significant
result demonstrates that only the treatmentisimportant, without any
confounding factors.

Overall, all these investigations (Fig. 2b, Supplementary Figs. 3,
4 and 6 and Supplementary Tables 4-7) converge on the fact that the
differential, opposite statistical effect responsesin hierarchy are con-
sistently changed in opposite directions for the psilocybin and escit-
alopramarms. This strongly supports the main finding of a differential
reconfiguration of hierarchy.

Inadditiontothis hierarchy analysis, we also tested this claim using
more traditional methods based on FC. We first tested the ability of FC
(Supplementary Fig. 3a) to distinguish the effects of psilocybin and
escitalopram before and after intervention. We compared the mean
across all elements in FC matrices and did not find any significant
differences between before and after intervention. Second, we tested
the ability of time-shifted FC (with ashift of 1 repetition time (TR); Sup-
plementary Fig. 3b) using a measure of asymmetry of these matrices
before and after intervention. In particular, we computed asymmetry
as the mean of the absolute difference between the respective time-
shifted FC matrix and the transposed matrix. We found a significant
difference for the psilocybin session (P < 0.05, paired Wilcoxon test
using 10,000 permutations) but not for the escitalopram session.
Still, the effect for psilocybin is less statistically significant than what
we found using the hierarchy measure.

Thislack of sensitivity of both alternate measurementsis not sur-
prising given that these methods are focused on grand average static,
spatial correlation and lack sensitivity to temporal dynamics. Even
moreimportantly, inthe case of FC, this measure is symmetric, meaning
that FC does not capture the asymmetry intrinsic to hierarchical organi-
zation. Onthe other hand, the time-shifted FCis asimple but effective
measure to capture asymmetry. Yet, it only captures static spatial
correlations across the entire time window. In contrast, the hierarchy
measure captures the hierarchical organization of spatiotemporal
dynamics generated from a whole-brain model. It is therefore more
sensitive to changes for both interventions and, more importantly,
reveals the differential, opposite statistical effect responses.

Additionally, we tested the power of using our measure of hier-
archical organization to distinguish treatment effects in a relatively
smallsample of patients and repeated these procedures using another
measure of global brain connectivity (GBC; Methods), which captures
the functional coupling of each region with the rest of the brain. Sup-
plementary Fig. 4 shows that this measure performs significantly
worse using GBC than when using hierarchical levels. This poorer

performance can be seenin the differencesin the scatterplots in Sup-
plementary Fig. 4afor GBC and hierarchical levels before and after both
psilocybin and escitalopram. To further quantify this difference, we
directly tested the inability of FC for distinguishing treatment effects
by comparingtheindividual correlations after versus before treatment:
psilocybin (P < 0.001, paired Wilcoxon test with10,000 permutations)
andescitalopram (P < 0.04, paired Wilcoxon test with10,000 permuta-
tions) (see the violin plots in Supplementary Fig. 4b).

Regional differences in hierarchical reconfiguration

Toachieve abetter understanding of the regional changes underlying
the differential hierarchical reconfiguration for each treatmentarm,
Fig.2c shows cortical and subcortical renderings of the average trophic
regional levels (across patients) for before and after treatment with
psilocybin (left column) and escitalopram (right column). Figure 2d
showsrenderings of the differential trophiclevels, demonstrating the
hierarchical reconfiguration and how the differential effects of the
two interventions result in strikingly different patterns of regional
trophiclevels. Although the small sample size makes statistical testing
at the regional level more difficult due to the multiple comparisons,
Supplementary Table 1 presents quantitative information reporting
onthetop 20% of regions involved in the hierarchical reorganization
overallineachinterventionarm (irrespective of whether responders
ornon-responders). As canbe seen, the psilocybin treatment changes
the hierarchy for a large number of mainly cortical regions, many of
which have been shown to be part of the global workspace®®. The top
regionsincludeboth cortical (left posterior cingulate and left rostral
anterior cingulate cortices) and subcortical (right hippocampus and
right amygdala) regions. In contrast, the overall response to escitalo-
pramtreatment does not change the hierarchy of cortical regions, but
only subcortical regions (of which the amygdala, left putamen and
right hippocampus are found in the global workspace).

In spite of the small sample size, we also carried out rigorous sta-
tistical testing. Supplementary Table 2 shows the results for the full
psilocybin treatment arm (22 patients), where 61 of 80 regions sur-
vive statistical testing (P < 0.05, paired Wilcoxon test using 10,000
permutations and false discovery rate (FDR)-corrected for multiple
comparisons). Incontrast, only 4 of 80 regions survive similar statisti-
cal testing for the escitalopram treatment arm (20 patients, P < 0.05,
paired Wilcoxon test using 10,000 permutations and FDR-corrected
for multiple comparisons). Please note that this difference in number
of significant regions between the two treatment arms is also found
in the classification.

Reconfigurationin responders and non-responders
Importantly, we also found significant differences between respond-
ers and non-responders in the hierarchical reconfigurations of brain
dynamics following psilocybin and escitalopram treatment. Given the
potential limitations of statistical testing in the small sample, we used
machine learning (again with cross-validation; Methods) to quantify the
significant hierarchical reorganizationrelated to treatmentresponse.
We used the efficacy of treatment using the amended (revised) Beck
Depression Inventory (BDI-1A), which captures abroad range of symp-
toms and places emphasis on the cognitive features of depression*.
For further justification for the use of this measure here, see ref. 45.
Here we used the classification from Daws and colleagues?, where a
patientis classified asaresponder if they show asignificant reduction
in BDI-1A after treatment (details in ref. 22).

Figure 3a shows the results of using machine learning for test-
ing significantly above chance level accuracies of pattern separa-
tion between responders versus non-responders for each treatment
arm (0.67 + 0.05 for psilocybinand 0.69 + 0.04 for escitalopram, using
the methods described above). The highest accuracy was obtained
using five regions for psilocybin and six regions for escitalopram
treatment.
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Fig. 3| Significant differential hierarchical reconfiguration between
responders and non-responders. Psilocybin results are shownin the left
column and escitalopram results in the right column. a, The changes in
hierarchical reorganization were used for machine-learning classification

of responders versus non-responders. The confusion matrices show the
percentage results of the 22 patients treated with psilocybin (of which there
were 18 responders) and the 20 patients treated with escitalopram (of which
there were eight responders). The results showed significantly above chance
levels in hierarchical reconfigurations for responders and non-respondersin
bothinterventions (0.67 + 0.05 (mean + s.d.) for psilocybin and 0.69 + 0.04 for
escitalopram). b, The renderings show the differences between before and after
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for responders and non-responders. The subcortical regions are rendered on
four coronalsslices in MNIspace (y = [-26, -14, -2, -10] mm). As can be seen, there
are significant differences in the hierarchical reconfiguration between these two
groups, both between and within psilocybin and escitalopram. The renderings
show lower precuneus and prefrontal hierarchical levels after treatmentin the
psilocybin responders compared to non-responders, and there is an intriguing
increase in hierarchical levels of the inferior frontal gyrus for the non-responders.
Similarly, the brains of the escitalopram responders compare to the full group in
that regions of the cingulate and regions of the prefrontal cortex have stronger
hierarchical levelsin the responders than in non-responders.

We systematically investigated the regional changes underlying
these different responses. Figure 3b shows renderings of the differ-
ences in trophic levels after and before treatment for psilocybin (left
column) and escitalopram (right column) for non-responders (left)
and responders (right). Confirming the significant machine-learning
patternseparationresults, within each treatment the responders and
non-responders show differences in the regional trophic levels for
responders versus non-responders. Supplementary Table 3 presents
quantitative information reporting on the top 20% of regions involved
in the overall hierarchical reorganization in each intervention arm.
These results offer some added insights into the treatment mecha-
nisms. In the case of the escitalopram treatment, the results show
that patients improve if the treatment also affects the hierarchical
reorganization of cortical regions that could be said to be part of the
global workspace. Specifically, the following cortical regions of the
global workspace moved up in hierarchy following treatment: left and
right posterior cingulate, left rostral anterior cingulate and right rostral
anterior cingulate cortices. In addition, the subcortical regions (left
putamen, left nucleus accumbens and right amygdala) of the global
workspace also moved back up the hierarchy. However, this will need
to be confirmed in future larger studies.

Inthe case of the psilocybin, most of the patients responded and so
show hierarchical changes similar to the general treatment response,
whichisboth cortical and subcortical regions of the global workspace
movingback up the hierarchy. As expected, non-responders do have a

slightly different response to responders, with prefrontal regions more
likely to move up the hierarchy.

We note that, due to the small sample size, statistical testing at
the regional level is difficult due to multiple comparisons. Still, for
psilocybin responders (18/22), we found 41 regions that were signifi-
cantly different before and after successful treatment (P < 0.05, paired
Wilcoxon test using 10,000 permutations and FDR-corrected for mul-
tiple comparisons). In escitalopram responders (8/20), there was only
one surviving region (left STN), which is at the top of the changing
hierarchy in Supplementary Table 3.

Treatment response can be differentiated and predicted by
the hierarchical reorganization

Further investigating the treatment response, we show that when
comparing the directedness of the hierarchical organization in treat-
ment, the after session gives significant differences across patients
(P<0.001, paired Wilcoxon test with 10,000 permutations; Fig. 4a).
In other words, the directedness reveals which intervention a given
patient has received, confirming the significantly different hierarchi-
cal reorganization linked to the two pharmacological interventions.
Furthermore, as shown in Fig. 4b, we can also classify the treatment
response using the regional trophic levels with a high accuracy of
0.83 £ 0.03 for the pattern-separation machine learning with cross-
validation (Methods). Please note that the training set was carefully
balanced in terms of number of examples for each class label, and
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Fig.4 | Treatment response can be differentiated and predicted by
hierarchical organization. a, The directedness of the hierarchical organization
inthe session after treatment shows significant differences across patients
(***P<0.001, paired Wilcoxon test with 10,000 permutations). b, The machine-
learning classification of the treatment response (using the trophic levels) also
found that difference between psilocybin versus escitalopram after sessions
canbe classified with 0.83 + 0.03 (mean + s.d.) accuracy. The confusion matrices
show the percentage results of 22 patients treated with psilocybin and 20
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patients treated with escitalopram. ¢, Equally, machine learning can be used to
make a prediction of the treatment response for patients on escitalopram. We
only do this for escitalopram, because the roughly equal numbers of responders
(eight patients) and non-responders (12 patients) made this possible. The
confusion matrices show the percentage results for the 20 patients treated with
escitalopram. This resulted in a significant prediction above chance level and an
accuracy of 0.85+0.04 (mean +s.d.).

the patients in each class for each shuffling iteration were randomly
selected. Finally, we were able to predict the treatment response using
the baseline data (that s, the before escitalopram treatment data). This
was only done for escitalopram, because this arm, unlike psilocybin,
had the necessary power, with roughly equal numbers of responders
and non-responders. Using machine learning with cross-validation,
Fig.4cshows ahighaccuracy of prediction (0.85 + 0.04). This signifi-
cant predictionis potentially interesting for future clinical applications.

Discussion

We have studied the effects of pharmacological interventions on the
brain dynamics of MDD patients before and after treatment with either
psilocybinor escitalopram. Directly addressing our main research ques-
tion, we were able to show that—despite leading to equalimprovements
in depressive symptoms (as measured with BDI-1A)—the two drugs
work in significantly different ways and show differential, opposite
statistical effect responses, as indexed by how each reconfigures the
global functional hierarchy of brain dynamics. In particular, we have
demonstrated that hierarchical measures of both directedness and
trophiclevels associated with brain dynamics are significantly different
before and after intervention, as well as different between responders
and non-responders for both drug types. Our results complement
previous research showing that there are shared and unique changesin
brain connectivity following different types of intervention for depres-
sion*®. More generally, the framework presented here offers a princi-
pledroute to evaluate the effects of any pharmacological intervention
withbefore and after empirical brain dynamics data. To generalize the
results, however, they should be replicated in larger populations and
forotherinterventions, but there could be apath for fulfilling the great
expectations of using neuroimaging for understanding the underlying
mechanisms of neuropsychiatric disorders and successful treatments™.

Hierarchical reorganization for psilocybin and escitalopram
We found that psilocybin treatment leads to a decrease in the overall
global measure of directedness of the hierarchy of brain dynamics
when comparing brain dynamics after versus before treatment
(Fig. 2b). In contrast, escitalopram leads to an increase in the overall
global measure of directedness of the hierarchy of brain dynamics.
These differential effects are in line with the known differential
effects of the pharmacology of the two drugs. Psilocybin is the prod-
rug of psilocin (4-OH-dimethyltryptamine) and has been shown to
act mainly through the serotonin 2A receptor (5-HT,,R)'*'**, thereby

initiating amulti-level plasticity*®. Psychedelics works partly through
5-HT2A receptor agonism leading to an increase in the sensitivity of
excitatory neurons expressing the receptor, whichin turn causes dys-
regulation of spontaneous population-level activity and spike-wave
decoupling®. Attesting to this, dynamic sensitivity analysis of the sys-
tematic perturbation of whole-brain models has been used to identify
brain networks that are part of the transition away from a depressive
brain state following administration of psilocybin®’.

In contrast, escitalopram is a member of the most frequently
prescribed antidepressant drug class, the so-called selective serotonin
reuptake inhibitors (SSRIs). Unlike psilocybin, which has no appreci-
able affinity or action of the serotonin transporter (5-HTT), SSRIs are
thought to rely on reuptake blockade at the 5-HTT.

Thissuggests an overall flattening of the hierarchy for psilocybin
after administration in MDD patients, which is consistent with the
evidence from healthy participants on psilocybin and other classic
psychedelics® . Specifically, psychedelics have been shown to broaden
the repertoire of connectivity states® ¥, increase the entropy of rest-
ing-state activity®®®, and enhance the connectivity between central
high-level networks and the rest of the brain®*>¢>%*, More generally,
the results are consistent with the REBUS theory” and the anarchic
brain hypothesis, integrating Friston’s free-energy principle®* with the
entropicbrain hypothesis of Carhart-Harris*®*, Here, the main hypoth-
esisisthat psychedelics canbring about arelaxation of the precision of
high-level priors or ‘beliefs’ (REBUS), allowing (anarchic) bottom-up
information flow, consistent with ‘anarchic’ (that is, hierarchy-free)
system dynamics. This theory is consistent with our results showing
psilocybin treatment leading to a hierarchical reconfiguration and
general flattening of the hierarchy. In contrast, theincreasein directed-
ness of the hierarchical reorganization after escitalopram treatment
would imply that the responders show a more top—down hierarchical
organization of their brain dynamics. It is tempting to speculate that
this top—down organization may also be linked to dampened respon-
sivity instress circuitry under these drugs®®, allowing easier top-down
control. However, to test this speculation would require a new, carefully
designed study, for which some progress has already been made®.
Evenso, further work is required to better scrutinize this hypothesis.

The results show that psilocybin and escitalopram work in very
different ways when used for rebalancing the hierarchical organization
of the brain dynamics in depression. Both interventions may lead to
a significant reduction in depressive symptoms, but do so in signifi-
cantly different ways. This was first hypothesized by Carhart-Harris
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and Nutt®®, and implied but not proven in the research of Daws and
colleagues®, who used the same data analysed here but only found
a change in integration-segregation for psilocybin but not for esci-
talopram, thus missing the differential, opposite statistical effect.
Crucially, as we have demonstrated here, this differential, opposite
statistical effect is not revealed using simple symmetric FC measures
orevenasymmetric time-shifted FC, which do not capture the relevant
temporal dynamics. Fully revealing the hierarchical organization of
the underlying spatiotemporal dynamics requires the sensitivity of
our hierarchical method combined with a causal, generative whole-
brain model.

The key argument for causality in connection with whole-brain
modeling is that removing a ‘causal’ region from the model results
in a significant inability to maintain the fit to empirical data. This is
analogous to how lesions are used in animal models, but used now for
‘insilico’models. Previously, Deco and colleagues lesioned the top and
bottom of the hierarchy and showed that only the first lesioning signifi-
cantly changed the fit of the model to the empirical data*. Here, we first
determine the GEC that allows the whole-brain model to generate the
best fit to the empirical data. Hence, we know that the regions in this
networkare causally important for generating the functional dynamics.

Regional hierarchical reorganization for treatments

The regional results show that positive depression recovery is linked
towhenboth corticaland subcortical regions of the global workspace
are moving back up in the hierarchy following treatment. However,
these changes differ in how psilocybin and escitalopram restore the
orchestration of healthy brain function, and the main mechanisms
underlying the treatment response for depression involve regional
hierarchical reconfiguration.

In terms of hierarchical organization at the regional level, psilo-
cybin treatment (Fig. 2c, left column brain rendering) leads to broad
changes across the whole brain, with multiple regions in the cingulate
cortexincreasing their trophiclevel when comparing after with before
the treatment. Similarly, subcortical regions such as the STN, hip-
pocampus and amygdala are also moving up in the hierarchy and drive
theorchestrationto ahigher degree thanbefore. In contrast, large parts
of the prefrontal and temporal cortices decrease their trophic level,
suggesting that they are moving down the hierarchical organization.

These patterns of hierarchical reconfiguration are very different
after escitalopram treatment for all patients (Fig. 2c, right column
brain rendering); in all cortical regions the trophic levels decrease
from after to before treatment for all patients, and many subcortical
regions (such as amygdala, putamen, hippocampus, caudate and STN)
show an increase in trophic levels. This drives the global increase in
directedness from before to after treatment, irrespective of outcome.
Importantly, comparing the regional trophic levels for responders
with non-responders following escitalopram treatment (Fig. 3b, right
column), the responders show a significantly different pattern, with
increases of trophic level in parts of cortical as well as subcortical
regions. These changes in the hierarchical position of brain regions
are driving the treatment response. In fact, the patients that respond
to either pharmacological intervention show an increase in the hier-
archical position of both cortical and subcortical regions. Given that
the trophic hierarchical levels are based on the GEC measure com-
ing from a whole-brain model of the brain dynamics, this implicates
these brain regions in the healthy transition away from treatment-
resistant depression.

These findings fit well with previous literature, which has impli-
cated major depression with disturbances in multiple resting-state
networks, including the SN and DMN, which are known to regulate cog-
nitive control and attention®® ", In particular, the findings also fit well
with the changes in large-scale FC between networks’”>. Specifically in
remitted depressed patients, increased FC has been observed between
the DMN and the dorsal attention network, and also within and between

networks such as the SN and executive control networks™. There is
also an emerging literature showing how anincrease in activity in the
DMN is associated with rumination and recurrence of depression’’¢.

Interestingly, many of the regions changing with treatment have
been shown to be part of the global workspace?, which orchestrates
healthy brain function. This opens up the interesting hypothesis that
depressionis caused by amalfunctioning orchestration of braindynam-
ics, where there is a partial breakdown in one or more of the brain
regions at the top of the hierarchy®. This hypothesis may even hold
for other neuropsychiatric disorders’ and, as such, it would be of
considerableinterest to further test this hypothesisin other datasets.

Predicting outcome using machine learning

Even more relevant for treatment, we were able to demonstrate that
the trophic hierarchical levels for an individual depressed patient
at baseline before treatment can be used to predict the outcome of
escitalopram treatment (Fig. 4c). However, there were too few non-
responders for the psilocybin treatment arm to be able to use this for
prediction. This finding for escitalopram is potentially exciting but
will needreplicationinamuch larger dataset to test the true predictive
value of this finding. The importance of more data can be appreciated
when comparingthis predictive result with the lower accuracy results
in Fig. 3a, where machine learning was used to measure the accuracy
inseparating the difference between responders and non-responders
before and after treatment. This lower accuracy runs counter to the
intuition that more information should lead to higher accuracy than
the predictionaccuracy. Still, inboth cases, machine learning performs
significantly better than chance, although the noise level is clearly
having a major effect with the relatively low sample size. Hence, in
future this problem should be further investigated in more appropriate
large-scale studies with more non-responders.

Potential limitations

Importantly, it should be noted that there are several potential limita-
tions to this study. First, the results here are based on neuroimaging
using BOLD signals from fMRIand thus carry anumber of potential limi-
tations. Theseinclude the fact that BOLD signals areindirect measures
of neural activity” at a coarse spatial scale of ~1-2 mm?®, corresponding
to -5 million neurons with diverse properties and functions’”. This
heterogeneity of neuronal populationsis especially truein the higher-
order brainregions oftenassociated with neuropsychiatric disorders®.
Equally, another limitation of resting-state fMRIis the significantintra-
individual rest-retest variability, which has been linked to variations
inanumber of different factorsincluding diet, diurnal changes, blood
pressure and even cognitive load®'. Nevertheless, BOLD signals are still
useful given that they are highly correlated with local field potentials
and multi-unit activity and thus accurately reflect the activity in local
cortical circuits’®”’. Second, the study has arelatively low sample size,
which limits the statistical power used for regional analyses. As such,
theregional results mentioned above are not conclusive but will require
further study and replication in larger studies.

Conclusion

Overall, the hierarchy of brain dynamics is clearly a very sensitive
measure of change. Thisis made possible by recent advancesinwhole-
brain modeling using a novel thermodynamics-inspired framework?,
providing the level of non-reversibility (or arrow of time) in brain
signals®*"*, This provides the observable for a model-based, direct
quantification of the asymmetric interactions, which is then quanti-
fied using the trophic framework. The thermodynamic framework
provides measures of the non-reversibility of brain states and the
identification of brainregionsinvolved in breaking the balance as well
asthenet fluxes between underlying brain networks before and after
interventions. In other words, the arrow of time of brain signals can
provide a powerful new way to identify the cause and effect when the

Nature Mental Health


http://www.nature.com/natmentalhealth

Article

https://doi.org/10.1038/s44220-024-00298-y

brainisreorganized. Here we have used this framework to identify how
different pharmacological interventions reorganize brain dynamics
differently. This has provided insights into the underlying mecha-
nisms of depressionand may in time lead to even better interventions.
Theresults also confirm the hypothesis that problems with the main
regions of the global workspace orchestrating brain dynamics could be
the main cause of neuropsychiatric disorders—consistent with previ-
ous findings and hypotheses’®*?, Future larger studies should further
investigate this hypothesis. We also note that the present whole-brain
modeling framework could be used for treatment studies using any
kind of effective intervention, whether pharmacological, electrical
or behavioral.

Methods

Empirical data

The trial’s design (Fig. 1a) and primary clinical outcomes (clinicaltrials.
gov:NCT03429075) have been documented previously?>?. The clinical
trial took place at the National Institute for Health Research Imperial
Clinical Research Facility and received sponsorship from Imperial Col-
lege London. It obtained ethical approval (ID17/LO/0389) from the NHS
Research and Imperial College Joint Research and Compliance Office,
aswell asapproval from the Health Research Authority and Medicines
and Healthcare Products Regulatory Agency. This study was carried
out under a Schedule 1 Drug Licence granted by the UK Home Office.
Writteninformed consent was provided by all participants who did not
receive any financial compensation.

Participants

To be eligible for participation, individuals needed a confirmed diag-
nosis of unipolar MDD from a general practitioner, scoring 16 or higher
on the 21-item Hamilton Depression Rating scale. Patients were also
queried about any prior use of psychedelics. Within this trial, 31% of
patients in the psilocybin group and 24% in the escitalopram group
reported previous experience with psychedelics. Individuals were
excluded from the trial if they had an immediate family or personal
history of psychosis, a physician-assessed risky physical health condi-
tion, a history of serious suicide attempts, a positive pregnancy test or
contraindications for undergoing an MRI. In addition, individuals with
contraindications for selective serotonin reuptake inhibitors (SSRIs)
or previous use of escitalopram were also excluded. It isimportant to
note that treatment resistance was not considered as an inclusion or
exclusion criterion. All eligible patients underwent telephone screen-
ing interviews, provided written informed consent, and underwent
comprehensive evaluations of their mental and physical medical histo-
ries. Supplementary Table 8 provides the self-reported demographics
for all patients.

Interventions

Of the 59 recruited patients with MDD, a random number generator
was used to assign 30 patients to the psilocybin arm and 29 patients to
the escitalopram arm. Similar to Daws and colleagues®, we excluded
some of the patients in each arm. Specifically, for the psilocybinarm,
one patient was excluded for choosing not to take the daily (placebo)
capsules, and due to the COVID-19 UK lockdown, two patients did not
attend the post-treatment session; finally, five patients were excluded
dueto excessive fMRI head motion. The remaining 22 patients (mean
age, 41.9 years, s.d. =11.0,14 men and 8 women) were included in the
psilocybin imaging sample. For the escitalopram arm, four patients
discontinued due to adverse reactions to escitalopram, one patient
reported cannabis use, one patient was lost due to the COVID-19
UK lockdown, and a further three patients were excluded due to
excessive fMRI head motion. The remaining 20 patients (mean age,
38.7 years, s.d. =11.0,14 men and 6 women) were included in the esci-
talopramimaging sample. Before treatment, all patients underwent
a baseline resting-state fMRI session with their eyes closed. On the

first dosing day (DD1), patients received either 25 mg of psilocybin
(psilocybinarm) or a presumed negligible dose of 1 mg of psilocybin
(escitalopram arm). Although all patients were informed that they
would receive psilocybin, they were unaware of the specific dosage
toensureblinding. Asecond dosing day (DD2) took place three weeks
after DD1, where patients received the same dosage as in the first
session. There was no crossover in dosages between the two arms.
Starting from the day after DD1, patients took daily capsules for a
total of six weeks and one day. In both conditions, patients ingested
one capsule per day during the initial three weeks, and increased the
dosage to two capsules per day afterward. The capsule content was
either aninert placebo (microcrystalline cellulose in the psilocybin
arm) or escitalopram in the escitalopram arm. In the escitalopram
arm, patientsreceived 10 mg of escitalopram for the first three weeks
and a total of 2 x 10 mg (20 mg) thereafter. Blinding was not done in
theclinical trialupon which the data were based. However, there are
recent data showing that psychedelic therapy may be less vulner-
able to expectancy biases than previously suspected®. In this study,
the authors analyzed the clinical data with mixed linear models to
investigate the association between both escitalopram and psilocy-
bin and pre-treatment efficacy-related expectations, baseline trait
suggestibility and absorption and therapeutic response. The results
showed that patients overall had significantly higher expectancy for
psilocybinrelative to escitalopram. Yet, expectancy for escitalopram
was associated withimproved therapeutic outcomes to escitalopram,
and expectancy for psilocybin was not predictive of the response to
psilocybin. The BDI remission rates were 64% for the psilocybin arm
and 30% for the escitalopram arm.

Measuring depression severity

The severity of depression was evaluated using BDI (BDI-1A) scores in
thisstudy. BDI-1Ais a patient-rated assessment tool that encompasses a
wider range of symptoms and places particular emphasis on the cogni-
tive aspects of depression**. Baseline BDl assessments were conducted
before the first dosing day (DD1), and subsequent evaluations took
place at two, four and six weeks after DDL. It is important to note that
BDI was considered a secondary outcome measure for this study, as
indicated by itsregistration on ClinicalTrials.gov (NCT03429075). The
primary outcome measure (QIDS-SR-16) was found not to be different
between the two intervention arms®.

MRl acquisition

Imaging of the brain was carried out witha 3T Siemens Tim Trio set-up
at Invicro. For the acquisition of brain anatomy, we used the recom-
mended MPRAGE parameters from Alzheimer’s Disease Neuroimaging
Initiative, Grand Opportunity (ADNI-GO56): 1-mm isotropic voxels;
160 sagittal slices; 256 x 256 in-plane field of view; echo time (TE),
2.98 ms; TR, 2,300 ms; generalized autocalibrating partially paral-
lel acquisitions (GRAPPA) acceleration, 2; flip angle, 9°; bandwidth,
240 Hz per pixel.

For the acquisition of functional data, we collected eyes-closed
resting-state fMRI data using T2*-weighted echo-planar images. We
used a 32-channel head coil to acquire 480 volumes in ~-10 min: 3-mm
isotropic voxels; 44 axial slices; TE, 30 ms; TR, 1,250 ms; GRAPPA accel-
eration, 2; flip angle, 70°; bandwidth, 2,232 Hz per pixel.

Parcellations

Allneuroimaging data were processed using the DK80 cortical parcel-
lation”®, whichis acombination of the Mindboggle-modified Desikan-
Killiany parcellation®* with a total of 62 cortical regions (31 regions
per hemisphere)® and 18 subcortical regions, that is, nine regions per
hemisphere: hippocampus, amygdala, subthalamic nucleus (STN),
globus pallidus internal segment (GPi), globus pallidus external seg-
ment (GPe), putamen, caudate, nucleus accumbens and thalamus.
We chose this parcellation given our previous work showing that this
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is the best compromise between spatial accuracy and computational
load for whole-brain modeling when measuring brain hierarchy in
neuropsychiatric disorders. However, we note that there is no current
consensus about whatis the best spatial parcellation scheme, as shown
by the paper by Eickhoffand colleagues reviewing the literature on the
topographic organization of the brain®.

fMRI data preprocessing

Theimaging datawere preprocessed using anin-house pipeline using
the FMRIB Software Library (FSL)*, Analysis of Functional Neurolmages
(AFND)®®, Freesurfer®” and Advanced Normalization Tools’® packages,
as described in detail in a previous publication®. Briefly, this pipeline
consists of de-spiking, slice time correction, motion correction, brain
extraction, rigid body registration to anatomical scans, nonlinear tem-
plate registration, scrubbing, bandpass filtering, regression with six
realignment motion regressors, three tissue signal regressors, draining
veins and local white matter. Daws and colleagues were careful torule
out any systematic bias from akathisia or similar movement artifacts,
asalsoshownin their supplementary materials and in particular their
supplementary table 1showing the head motion descriptive statistics™.
The DK80 parcellated timeseries used here for hierarchical analysis
was extracted from this preprocessed data.

Hopfwhole-brain model

Inthis study we utilized a Stuart-Landau oscillator model to represent
thelocal dynamics of each brain region. This model, which corresponds
to the normal form of a supercritical Hopf bifurcation, is widely used
for investigating the transition from noisy to oscillatory dynamics®.
Previousresearch has successfully employed whole-brain Hopf models
to replicate important characteristics of brain dynamics observed in
electrophysiology®””, magnetoencephalography® and fMRI*. The full
mathematical description of the Hopf model and the linearization of
this model are available in Supplementary Information.

Model optimization—GEC

To fit the model to the empirical data (BOLD fMRI of each participant
in each brain state), we used a pseudo-gradient procedure to opti-
mize the coupling connectivity matrix C, where the starting point
was the standard structural connectivity matrix computed from the
diffusion MRI data from aspecially optimized state-of-the-art Human
Connectome Project (HCP) protocol®®. The final optimized matrix
comprises the effective conductivity values for each anatomical exist-
ing pair connections instead of just the diffusion MRI (AMRI)-based
density of fibers. Specifically, we iteratively compared the output of
the model with the empirical measures of the functional correlation
matrix (FC™Pi<d) that is, the normalized covariance matrix of the
functional neuroimaging data.

Additionally, to fit the whole-brain level of non-reversibility, we
define the forward and reversal matrices of time-shifted correlations
for the forward version and respective reversed backward version of
a multidimensional timeseries for the different brain regions. This
allows us to compute the forward and reversal matrices, expressing
the functional causal dependencies between the different variables
for the forward and artificially generated reversed backward version
of amultidimensional system. We compared the output of the model
with the forward normalized T time-shifted covariances (stg':‘f’v::;a‘(r)).
These normalized time-shifted covariances were derived by shifting
the empirical covariance matrix ks™"(r) and dividing each

forward

pair (i, j) by \/KSemp"ica' (0)ks<™mi<al 0y It is worth noting that these

forward, ii forward, jj

normalized time-shifted covariances break the symmetry of the
couplings, resulting in an enhanced fitting quality®. To fully capture
the asymmetry, we fit the non-reversibility by performing the same
procedure on the reversed normalized 1 time-shifted covariances
(Fsempirical(r)).

reversal

Using aheuristic pseudo-gradientalgorithm, we seta=¢=0.00001
and updated Cuntil achieving a fully optimized fit. More specifically,
the updating uses the following form:

Clj - Clj + a(FC;mpirical _ FC:;OdEI)

empirical empirical

+< ((storward,ij (T) - FSreversal,ij (T)> (1)
del del

- (FS?;?w:rd,y’ (T) - Fs:lzegefsal,y‘ (T)))

where FSfwera. (D) is defined similarly for forward Fs{™<" () and

empirical forward, j

FSf;f,’gf;aL,-j(r) is defined for reversal FS (7). In other words, for the

reversal, ij

forward version, itis given by the first Nrows and columns of the simu-

model

lated 7 time-shifted covariances KSg),ya:q(t) Normalized by dividing

each pair (i, j) by \/ KSfousra, i(0) KShooa! | ;(0), where Kspodel (1) is the

shifted simulated covariance matrix computed as

KSfoaeta(r) = exp () K @)

where the /matrix is the Jacobian of the linearized Hopf model evalu-
ated at the fixed point (Supplementary Information). It is important

model

to note that KSg,,..4(0) = K. The same procedure was applied to the
reversal version of FSuey, (- The modelis executed iteratively with
the updated Cuntil astable and convergent fit is achieved. We use this
methodin twostages: (1) at the group level (for the before and after for
each of the two treatment types); (2) this is then used as the starting
point for individual optimization. At the group level, we initialize Cas
the anatomical connectivity data obtained through probabilistic trac-
tography from dMRI(Methods). The update process only modifies the
known existing connections from this matrix within each hemisphere,
following the anatomical connections. However, an exceptionis made
for homolog connections between corresponding regions in both
hemispheres, as tractography tends to be less accurate in capturing
this type of connectivity. For the Stuart-Landau model, as mentioned
above, weseta =¢=0.00001and continue the algorithm until conver-
gence is attained. In each iteration, we compute the model results by
averaging over multiple simulations corresponding to the number
of participants. In summary, we refer to the optimized matrix C as
the GEC*.

Briefly, the main difference between the GEC and other examples
of effective connectivity such as dynamic causal modeling (DCM)%,
Granger causality®” and transfer entropy?***"'°%is the anatomically
constrained nature of GEC. Inmostimplementations of DCM, Granger
andtransfer entropy, the underlying brainanatomy is not constraining
theresults. Furthermore, both methods measure some form of causal-
ity fromthe timeseries but do not use a generative form of causality. In
our GEC, this generative aspect is explicitly given by brain anatomical
constraints and whole-brain modeling. Importantly, this modeling
typically allows for an estimation across the whole brain rather than
only for the limited amount of regions given by DCM (up to ten regions
in recent implementations), although recent work has applied the
framework to the whole brain'®*"'%,

Defining GBC
For each session in each patient, we computed the GBC, given by

1 N
GBC; = N D FCy (3)
J=1

Functional hierarchy metrics

To investigate functional hierarchical organization following phar-
macological treatments in MDD patients, we adapted the hierarchy
measures of directedness and trophic levels in directed networks?.
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This provides both the hierarchical node-level information (trophic
level) and the global information (directedness, or trophic coherence),
and here we apply this to the directed graph obtained from the GEC
matrix, the individualized optimized matrix C given by equation (1).

Trophiclevels

The GEC matrix defines a graph of N nodes connected by weighted
edges determined by the elements of C. For each node nin the graph,
we introduce the concepts of in-weight (di"), by summing the m col-
umns of C, and out-weight (d?"*), by summing the m rows of C, defined
asfollows:

dritn = z Coum 4)

m

dr?m = Z Cinn (5)
m

We define the total weight of node nas u, by

Up = d + A" 6)

Furthermore, we define theimbalance for node nasv,, represent-
ing the difference between the flow into and out of the node by

Un = di — d3™ @)

The (weighted) graph-Laplacian operator Aonvector his givenby

A = diag(u)— C-CT (€©)]

Consequently, the enhanced concept of trophiclevel corresponds
tothe solution h of the linear system of equations

Ah=v 9)

Here each component of the vector h corresponds to the trophic
levelin a given brain region. Importantly, while the operator A is sym-
metric, the asymmetry of the network is evident in the imbalance
vectorv.

Directedness (trophic coherence) of a network

Oncethe hierarchy level h has been established, we can assess the net-
work’s global directionality by computingits directedness (or trophic
coherence) using the equation

_ Zm,, Cmn (hn - hm - 1)2

Fo=1
0 Y Conn

(10)

Anetworkis considered maximally coherentwhen F, =1, whereasit
isregarded asincoherent when F, = 0. The trophic coherenceisagraph
theoretical measure of hierarchical organization. Elevated values of
trophic coherenceindicate a greater degree of hierarchical organiza-
tion. Using the GEC obtained through the whole-brain model-based
framework, we computed hierarchical levels for each region in our
parcellation and trophic coherence characterizing the global level of
hierarchical organization.

SVM for pattern separation and classification

Both pattern separation and classification were conducted using a
supportvector machine (SVM) with Gaussian kernels asimplemented
by the function fitcecoc in MATLAB (2022b), returning a full, trained,
two-class, error-correcting output codes model with the predictorsin
theinputwith classlabels. We used the one-versus-one coding design
with K= 2 as the number of unique class labels in K(K -1)/2 binary
SVM models.

The output of the SVM was two classes, which correspond to (1)
after versus before, (2) responder versus non-responder or (3) psilo-
cybin versus escitalopram treatment. The input features used for
classification were hierarchical trophic levels (for each patient and
condition). We used a selection of inputs by statistically comparing
hierarchical trophic levels across patients, region by region, using a
Wilcoxon 10,000 permutation tests and sorting these. We selected the
minimum number of inputs that yielded the largest accuracy. The SVM
was trained using the leave-one-out cross-validation procedure; that
is, we randomly chose one patient for generalization and used the rest
for training. This was repeated and shuffled 1,000 times. Furthermore,
thetraining set was balanced in terms of number of examples for each
classlabel, while randomly selecting the patientsin each class for each
shuffling iteration.

To estimate the highest possible accuracy, we systematically
computed the accuracy by sequentially selecting different numbers
of regions from the sorted list of statistically significant trophic lev-
els mentioned above. In terms of the minimum number of regions
used for the pattern separation in Fig. 2a, the highest accuracy was
obtained for 69 regions for psilocybin and six regions for escitalopram
treatment before versus after. In Fig. 3a, for the pattern separation
betweenresponders versus non-responders, the highest accuracy was
obtained using five regions for psilocybin and six regions for escitalo-
pramtreatment. InFig.4b, the highestaccuracy comparing treatment
was obtained using 33 regions. In Fig. 4c, the highest accuracy was
obtained using five regions for the prediction of treatment response.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All requests for raw and analysed data and materials are promptly
reviewed by R.L.C.-H., the chief investigator on the original work.
Patient-related data notincluded in the paper were generated as part
of clinical trials and may be subject to patient confidentiality. All data
neededto evaluate the conclusionsinthe paper are presentin the paper
and/or Supplementary Information.

Code availability
Code used to analyze the data is available from https://github.com/
decolab/Psilodep2.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|X’ The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

|X’ For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
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Data collection  The MRI sequences used to collect the fMRI data 3T Siemens Tim Trio are part of the proprietary software provided by Siemens

Data analysis Custom-made MATLAB scripts are freely available at https://github.com/decolab/Psilodep2

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy
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Data exclusions  Of the 29 randomly assigned patients for the escitalopram-arm: four patients discontinued due to adverse reactions to escitalopram, one
patient reported cannabis use, one patient was lost due to the COVID-19 UK lockdown and a further three patients were excluded due to
excessive fMRI head motion
Of the 30 randomly assigned patients in the psilocybin-arm: one patient was excluded for choosing not to take the daily (placebo) capsules,
and due to the COVID-19 UK lockdown, two patients did not attend the post-treatment session and finally five patients were excluded due to
excessive fMRI head motion.

Together, this resulted in a final sample of n=20 in the escitalopram-arm and n=22 in the psilocybin-arm.

Replication The machine learning trained the support vector machine (SVM) with the leave-one-out cross-validation procedure, that is we randomly
chose one patient for generalisation and the whole rest for training, repeated and shuffled 1,000 times. Furthermore, we made sure that the
training set was balanced in terms of number of examples for each class label, and randomly selecting the patients in each class for each
shuffling iteration

Randomization A random number generator was used to randomly assign patients to the psilocybin-arm or the escitalopram-arm.

Blinding In this double-blind RCT, the patients and investigators were blind to the trial-arm, psilocybin therapy dosage (a negligible 1mg vs 25mg) and
daily capsule contents (escitalopram vs placebo). More specifically, patients in the psilocybin-arm received 2 x 25mg psilocybin therapy
sessions and daily placebo tablets. Patients in the escitalopram-arm received 2 x 1mg psilocybin therapy sessions and daily escitalopram
tablets.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChiIP-seq
Eukaryotic cell lines g |:| Flow cytometry
Palaeontology and archaeology |:| |Z MRI-based neuroimaging
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Human research participants

Clinical data
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Dual use research of concern

Human research participants

Policy information about studies involving human research participants

Population characteristics Psilocybin arm: 22 patients mean age, 41.9 years, s.d.=11.0, 8 women. Escitalopram-arm: 20 patients mean age, 38.7 years,
s.d.=11.0, 6 women.

To be eligible for participation, individuals needed a confirmed diagnosis of unipolar Major Depressive Disorder (MDD) from a
general practitioner, scoring 16 or higher on the 21-item Hamilton Depression Rating scale.

Recruitment Individuals were excluded from the trial if they had an immediate family or personal history of psychosis, a physician-
assessed risky physical health condition, a history of serious suicide attempts, a positive pregnancy test, or contraindications




Ethics oversight

for undergoing an MRI. In addition, individuals with contraindications for selective serotonin reuptake inhibitors (SSRIs) or
previous use of escitalopram were also excluded. It is important to note that treatment resistance was not considered as an
inclusion or exclusion criterion. All eligible patients underwent telephone screening interviews, provided written informed
consent, and underwent comprehensive evaluations of their mental and physical medical histories.

The RCT obtained ethical approval from the NHS research and Imperial College Joint Research and Compliance Office, as well
as approval from the Health Research Authority and Medicines and Healthcare products Regulatory Agency. This study was
carried out under a Schedule 1 Drug License granted by the UK Home Office.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration

Study protocol

Data collection

Outcomes

clinicaltrials.gov: NCT03429075

https://clinicaltrials.gov/study/NCT03429075, we have also uploaded the full set of protocols from the trial as supplied with the
original publication

Study recruitment and data collection: January 2019 to March 2000.

The data was collected at three sites:

Neuropsychopharmacology Unit

Centre for Psychiatry, Division of Brain Sciences, Imperial College London
Burlington Danes Building, Du Cane Rd,

London, W12 ONN

NIHR/Wellcome Trust Imperial Clinical Research Facility (CRF)
Hammersmith Hospital, London, W12 OHS

IMANOVA

Centre for Neuropsychopharmacology
Division of Brain Sciences

Burlington Danes Building, Du Cane Rd,
London

W12 ONN

In the original clinical trial, the primary outcome measure was the Quick Inventory of Depressive Symptoms (QIDS) and changes from
baseline to 4-weeks after the (psilocybin) dosing day. The QIDS measures internal states including most of the diagnostic criteria for
depression and is sensitive to treatment effects. The 14-item daily QIDS will be collected from study entry to the primary endpoint at
4 weeks post dosing day, using a version of this scale tailored to daily use . Follow-up occurred monthly at 2-6 months. Secondary
outcomes include (but were not limited to): additional patient (BDI) and clinician (HAM-D) depression rating scales, well-being
(WEMWABS), anxiety (STAI), optimism (LOT-R), personality (BIG-5) and others, plus all imaging outcomes (e.g. anatomical measures,
including: morphometry, cortical thickness and tractography; functional measures, including: CBF, BOLD RSFC, signal variance and
entropy/complexity, and activations to emotional faces). After the 4-week post dosing day primary end-point, subsequent follow-up
was done remotely with the exception of a structured interview at 6 months.

For this study, the causal brain mechanisms were captured by generative effective connectivity, estimated from whole-brain
modelling of resting state for each session and patient. Hierarchy was determined for each of these sessions using measures of
directedness and trophic levels on the effective connectivity, which captures cycle structure, stability and percolation. Results
showed that the two pharmacological interventions caused significantly different hierarchical reconfigurations of whole-brain
dynamics with clear interaction effects. Treatment responses were found to depend on re-establishing cortical and subcortical
regions in the so-called ‘global workspace’ closer to the top of the hierarchy. Further, using machine learning revealed significant
differential reorganisation of brain hierarchy before and after the two treatments. Machine learning was also able to predict
treatment response. Overall, the results demonstrate that psilocybin and escitalopram work in different ways for rebalancing brain
dynamics in depression. This confirm the hypothesis that neuropsychiatric disorders could be caused by the breakdown in regions
orchestrating brain dynamics from the top of the hierarchy.

Magnetic resonance imaging

Experimental design
Design type

Design specifications

Resting state blood oxygen level dependent fMRI (eyes closed)

Two rs-rMRI scans per patient, each with 480 measurements (TR=1250ms)

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used

to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across
subjects).
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Acquisition
Imaging type(s)
Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI [ ] used

Preprocessing

Preprocessing software

Normalization

Normalization template

Noise and artifact removal

Volume censoring

Functional MR
3T Siemens Tim Trio

Eyes-closed resting-state fMRI data were collected with T2*-weighted echo-planar images with 3-mm isotropic voxels. A
32-channel head coil was used to acquire 480 volumes in ~10min: TR, 1,250ms; TE, 30ms; 44 axial slices; flip angle, 70
degrees; bandwidth, 2,232 Hz per pixel; and GRAPPA acceleration, 2).

Whole brain

X Not used

Standardized preprocessing methods used an in-house pipeline using FMRIB Software Library (FSL), Analysis of Functional
Neurolmages (AFNI), Freesurfer and Advanced Normalization Tools packages, as described in details in Daws et al 2023.
Briefly, this pipeline consists of de-spiking, slice time correction, motion correction, brain extraction, rigid body registration to
anatomical scans, nonlinear template registration, scrubbing, bandpass filtering, regression with six realignment motion
regressors, three tissue signal regressors, draining veins and local white matter.

fMRI volumes were co-registered to the anatomical scans using a rigid body registration (BBR, FSL). Non-linear registration to
the 2mm MNI brain was applied to the co-registered volumes (Symmetric Normalization (SyN), ANTS).

MNI305 2mm brain

Voxelwise nuisance regression was used with the six realignment motion regressors and three tissue signal regressors
(Ventricles, Freesurfer, eroded in 2 mm space), draining veins (FSL's CSF minus Freesurfer’s Ventricles, eroded in 1 mm
space) and local white matter (WM) (FSL’s WM minus Freesurfer’s subcortical gray matter structures, eroded in 2 mm
space). . Regarding local WM regression, AFNI's 3dLocalstat was used to calculate the mean local WM time series for each
voxel, using a 25-mm radius sphere centered on each voxel.

Scrubbing using a framewise displacement threshold of 0.5 mm, scrubbed volumes were replaced with the mean of the
neighboring volumes.

Statistical modeling & inference

Model type and settings

Effect(s) tested

We used the whole-brain modelling framework to analyse the empirical data

Spatiotemporal structure, hierarchy

Specify type of analysis: | Whole brain [ | ROI-based [ ] Both

Statistic type for inference
(See Eklund et al. 2016)

Correction

Models & analysis

n/a | Involved in the study

Non-parametric permutation testing and Wilcoxon

False discovery rate (FDR) was applied

|:| |Z Functional and/or effective connectivity

|:| |Z Graph analysis

|:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Pearson correlation

Graph analysis

Trophic levels defined by the asymmetric generative effective connectivity
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