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Complex harmonics reveal low-dimensional manifolds of critical brain dynamics
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The brain needs to perform time-critical computations to ensure survival. A potential solution lies in the
nonlocal, distributed computation at the whole-brain level made possible by criticality and amplified by the
rare long-range connections found in the brain’s unique anatomical structure. This nonlocality can be captured
by the mathematical structure of Schrödinger’s wave equation, which is at the heart of the complex harmonics
decomposition (CHARM) framework that performs the necessary dimensional manifold reduction able to extract
nonlocality in critical spacetime brain dynamics. Using a large neuroimaging dataset of over 1000 people,
CHARM captured the critical, nonlocal and long-range nature of brain dynamics and the underlying mechanisms
were established using a precise whole-brain model. Equally, CHARM revealed the significantly different critical
dynamics of wakefulness and sleep. Overall, CHARM is a promising theoretical framework for capturing the
low-dimensionality of the complex network dynamics observed in neuroscience and provides evidence that
networks of brain regions rather than individual brain regions are the key computational engines of critical
brain dynamics.
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I. INTRODUCTION

There is a deep conundrum at the heart of human cogni-
tion, namely, how the surprisingly slow information transfer
between neurons (with typical latencies of around 10–20 ms)
is able to solve the time-critical computational problems en-
suring survival [1]. Paradoxically, the wetware of the brain is
still better at solving problems than much faster silicon-based
computers. This raises the unsolved physical problem of how
the brain overcomes the limitations of speed for information
transfer across spacetime.

Beyond local computation, the solution has been proposed
to be time-critical distributed computation [2]. The high-
dimensional space obtained from whole brain neuroimaging
using functional MRI or EEG/MEG has been described by
lower-dimensional, spatially distributed “resting state net-
works” following an avalanche of important research over
the last decades [3–7]. Importantly, the computation at the
network level emerges from the existence of critical dy-
namics producing long-range interactions which give rise
to low-dimensional manifolds [8–11]. Recently, this has
been extended to show that low-dimensional criticality is
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preserved and can be embedded in high-dimensional brain
dynamics [12]. This is amplified by the long-range inter-
actions in critical dynamics through the existence of the
unique mammalian architecture with rare long-range connec-
tions between distant brain regions, which are exceptions
to the predominant short-range wiring with an exponential
drop off in strength over distance [13–15]. This Bauplan
with weight-distance relations supplemented with rare long-
range connections between brain regions likely makes brain
architecture unique among known physical systems [16].
Thus, the underlying low-dimensional networks express-
ing these nonlocal effects and performing the necessary
time-critical computations are key to understanding human
cognition [2].

Here, we developed complex harmonics decomposition
(CHARM) to provide the low-dimensional manifold reduction
able to capture nonlocality in critical spacetime brain dynam-
ics. The CHARM framework uses the formal mathematical
definition of the manifold reduction problem [17–19]. Cru-
cially, however, instead of deriving this from the heat equation
which is solely conserving local neighborhood, we derived
this from the Schrödinger equation to produce a complex ker-
nel able to capture the long-range, nonlocal effects of critical
brain dynamics [20–22].

We derive the mathematical structure of CHARM and
we demonstrate the efficiency and robustness of this fun-
damental framework for understanding brain dynamics us-
ing large-scale neuroimaging data from over 1000 human
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FIG. 1. Extraction of low-dimensional manifold of networks in brain dynamics. (a) Neuroimaging data of whole-brain dynamics yields
a higher-dimensional space, which can be decomposed into low-dimensional manifold networks. The brain data is measured with functional
MRI and arises from the neural activity coupled through the underlying anatomy with a special topology. Uniquely to mammalian brain
architecture there are long-range (LR) connections, which are exceptions to short-range wiring with an exponential drop off in strength over
distance, called the exponential distance rule (EDR). The functional activity is divided into specific brain regions in a given parcellation with
M regions. In red, we show the M high-dimensional source space with examples of the individual timecourses and the M × M functional
connectivity source matrix. This can be decomposed into low-dimensional manifolds, given the existence of critical dynamics producing
long-range interactions which in the brain are further amplified by the anatomical LR connectivity. The k low-dimensional manifold space is
shown in light blue with the timeseries activity in the underlying manifold networks. The quality of this manifold space can be measured by
comparing the M high-dimensional reconstructed space, here shown in orange with examples of the individual timecourses and the M × M
functional connectivity reconstructed matrix. (b) The panel is a cartoon of the process of decomposition using three different frameworks on a
hidden underlying manifold with colormaps indicating neighborhood and the lines indicating long-range connections (far left). The first box
shows the principles of principal component analysis (PCA) which uses a linear method of maximizing variance in successive orthogonal
directions. The second box shows illustrates the principles underlying harmonics graph Laplacian decomposition. Thanks to the Gaussian
kernel derived from the heat equation, this conserves neighborhood relationships as reflected in the ability of the method to decompose the
manifold into a low-dimensional space (where the coloring matches the neighborhood of the hidden manifold). The third box illustrates the
complex harmonics diffusion maps (CHARM) framework. This uses a complex kernel derived from the Schrödinger Wave equation able to
capture not only the neighborhood relationships but also the nonlocal long-range interactions, thanks to the interference in the nonlocal brain
dynamics brought about by the underlying criticality amplified by the anatomical long-range connectivity. (c) Whole-brain modeling was used
to test the relevance of PCA, harmonics, and CHARM to capture the two aspects of nonlocality in brain dynamics, namely, criticality and the
role of anatomical long-range connections.

participants. We show that this mathematical structure cap-
tures the critical, nonlocal and long-range nature of brain
dynamics, and that this is significantly better than the best
competing method. We establish the mechanistic reasons
for why this mathematical formalism is able to capture the
long-range, nonlocal critical interactions in brain dynamics
by using a precise whole-brain model. Finally, we show
how CHARM can reveal the significant differences in crit-
ical dynamics of different brain states of wakefulness and
sleep.

II. COMPLEX HARMONIC DECOMPOSITION (CHARM)
OF BRAIN DYNAMICS

We present here the mathematical formulation of the
CHARM framework for manifold reduction of complex dy-
namical systems such as the brain.

Figure 1(a) shows an overview of how CHARM can
be used to decompose the complex high-dimensional space
neuroimaging data of whole-brain dynamics into low-
dimensional manifold networks.
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In Fig. 1(b) we show a cartoon of the process of decompo-
sition using classic frameworks of PCA and harmonics and the
CHARM framework on a hidden underlying manifold with
colormaps indicating neighborhood and the lines indicating
long-range connections. We then use whole-brain modeling to
elucidate the underlying mechanisms of CHARM to capture
the two aspects of nonlocality in brain dynamics, namely,
criticality and the role of anatomical long-range connections
[Fig. 1(c)].

CHARM is used on complex neuroimaging data where
whole-brain activity is measured using fMRI which produces
BOLD timeseries for over 1000 healthy human participants.
To reduce the dimensionality of these timeseries, we define
xi ∈ RM , which denotes the column vector containing the
BOLD signal of the M brain regions at the ith time point of the
time series. The matrix of all brain regions can then be defined
by X = [x1, x2, . . . , xN ] ∈ RM×N , where the columns of the
matrix span a time window of N time point observations. We
assume that the brain dynamics lie on a sufficiently smooth
low-dimensional (say of dimension k � M) manifold which
is embedded in the high-dimensional RM space. With this
notation, the generic problem of dimensionality reduction can
be defined as follows: Given a set X , find a set of points
Y = [y1, y2, . . . , yN ] ∈ Rk×N such that yi ∈ Rk “represents”
xi.

The formulation of manifold reduction in continuum space
allows for the analytical derivation in discrete space [18].
In continuum space, the manifold reduction can be for-
mally defined as follows: Let M be a smooth, compact,
m-dimensional Riemannian source space [23]. First consider
the one-dimensional reduction, where the manifold is a real
line which is defined in such way that the points close together
in the source space are also mapped close together on the
manifold line. Let f be such a map from source space to
a manifold line, f : M → R1 which is twice differentiable.
Belkin and Niyogi have shown that this map can be found by
minimizing the cost function H:

H =
∫
M

‖∇ f (x)‖2 dx. (1)

Minimizing the objective function H is equivalent to find-
ing the eigenfunctions of the Laplace Beltrami operator L,
defined by L f = −div∇( f ). Let us denote by fi the eigen-
functions of L. Consequently, the map to a line is defined
by the first nontrivial eigenfunction. Please note that the first
eigenfunction is a trivial constant function that maps the entire
manifold to a single point. In the general case the map defin-
ing the dimensionality reduction conserving neighborhood is
given by

x → [ f1(x), f2(x), . . . , fk (x)]. (2)

The Laplace Beltrami operator on differentiable functions
on a source space M is intimately related to heat flow as
shown by Belkin and Niyogi [18], who derived the harmonic
decomposition from the heat equation, i.e., the partial differ-
ential equation ( ∂

∂t + L)u = 0. They showed that the solution
is given by u(x, t ) = ∫

M Ht (x, y) f (y) dy where Ht (x, y) is
the heat kernel, the Green’s function for this partial differ-
ential equation. In other words, the initial heat distribution

u(x, 0) = f (x). Therefore,

L f (x) = Lu(x, 0) = − lim
t→0

∂

∂t

[ ∫
M

Ht (x, y) f (y) dy

]
. (3)

Given that the kernel of the heat equation is approximately
Gaussian, this leads to

Ht (x, y) ≈ (4πt )−k/2e− ‖x−y‖2

4t . (4)

Notice that as t tends to 0, the heat kernel Ht (x, y) tends
to Dirac’s δ function, that is, limt→0

∫
M Ht (x, y) f (y) dy] =

f (x). Therefore, for small t from the definition of the deriva-
tive, we have

L f (x) ≈ 1

t

[
f (x) − (4πt )−M/2

∫
M

e− ‖x−y‖2

4t f (y) dy
]
. (5)

If [x1, x2, . . . , xN ] are data points on M, the last expression
can be approximated by

L f (xi ) ≈ 1

t

⎡⎣ f (xi ) − 1

N
(4πt )−M/2

∑
x j

e− ‖xi−x j ‖2

4t f
(
x j

)⎤⎦.

(6)
Given that global coefficients will not affect the eigenvec-

tors of the discrete Laplacian, we can conveniently rescale
the last equation such that the eigenfunctions of L can be
discretized by

L f (xi ) ≈
∑

x j

e− ‖xi−x j ‖2

4t f (x j ) −
⎛⎝∑

x j

e− ‖xi−x j ‖2

4t

⎞⎠ f (xi ), (7)

which determines the discretisation precisely as the graph
Laplacian matrix as shown by Belkin and Niyogi. The coor-
dinates of the nonlinear projection of a point xi in the reduced
manifold latent k-dimensional space spanned by the first k
eigenvectors [ϕ1,ϕ2, . . . ,ϕk] of the graph Laplacian is given
by

yi = [λ1ϕ1(i), λ2ϕ2(i), . . . , λkϕk (i)] i = 1 . . . N. (8)

Here ϕ j (i) denotes the ith element of the eigenvector ϕ j .
The embedding dimension can be determined by the spec-
tral gap in the eigenvalues of the final decomposition, which
provides the classic harmonic decomposition. To sum up,
the origin of the Gaussian kernel can be analytically derived
from the definition of the manifold reduction problem in the
continuum space by solving the heat equation when the time
tends to zero. A direct interpretation of the Gaussian kernel
functioning is thus as the implementation of manifold reduc-
tion conserving the discrete neighborhood space, which is the
basis of harmonic decomposition in Eq. (8).

However, given that brain dynamics are not just local, we
were inspired by Schrödinger to develop a complex kernel
to capture the long-range functional connectivity of the hu-
man brain. The motivation was provided by previous research
which has shown that the long-range exceptions to the under-
lying local EDR improve information transfer in the human
brain [2,16]. This complex kernel should be able to capture the
interference and aggregation of information transfer mediated
by long-range interactions between brain regions. This would
capture the effect of long-range dependencies essential in
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brain dynamics due both to the role by long-range anatomical
exceptions but also to the dynamical criticality causing the
emergence of long-range functional correlations.

Here, we first provide a formal mathematical derivation.
The key idea is to find an alternative route to capture the non-
local effects by finding a complex equation with time going to
zero from the imaginary axis, rather than just have time go to
zero from the real axis (as was the case for the heat equation).
Specifically, beyond the heat equation, which is only defined
in real space, we propose to use the Schrödinger equation [21],
i.e., the partial differential equation (i ∂

∂t − L)û = 0, which
corresponds to the case of a free particle. Here we simpli-
fied Schrödinger’s equation by using the constants h̄/2m = 1.
The solution is given by û(x, t ) = ∫

M Ĥt (x, y) f (y) dy, where
Ĥt (x, y) is the free particle Schrödinger kernel, also known as
Green’s function for this partial differential equation.

This allows us to carry out exactly the same steps as above
but now starting from Schrödinger’s equation instead of the
heat equation. The results are equivalent and easy to reproduce
using the Wick transformation t → it , arriving to the equiva-
lent convenient discretisation of the eigenfunctions of L, from
the Schrödinger perspective, as

L f (xi ) ≈
∑

x j

ei
‖xi−x j ‖2

4t f (x j ) −
⎛⎝∑

x j

ei
‖xi−x j ‖2

4t

⎞⎠ f (xi ). (9)

In other words, we now get an approximation of the graph
Laplacian matrix but with a new complex kernel for the matrix
Ŵ ∈ RN×N , whose elements Ŵi j are given by

Ŵi j = ei
‖xi−x j ‖2

σ , (10)

where ‖ ‖ computes the distance between two points using the
Euclidean L2 norm, and σ serves as a scale parameter of the
kernel. Instead of the graph Laplacian, it is more convenient
to work with the transition probability matrix. To best
capture long-range and nonlocal interactions, which produces
constructive and destructive interferences, we used a two-step
procedure: First, we define the t-steps diffusion matrix by
taking the power t of the diffusion matrix Ŵ

t
. Second,

similar to Schrödinger [22,24], we define the nonnormalized
probability transition matrix by the square module of the
t-steps diffusion matrix:

Q̂(t ) = |Ŵ t |2, (11)

where || notates the module. We define the corresponding
diagonal normalisation matrix D̂ with elements as follows:

D̂ii =
N∑

j=1

Q̂i j, (12)

where the normalized transition probability matrix P̂ is given
by

P̂(t ) = D̂
−1

Q̂(t ). (13)

Applying singular value decomposition on P̂, we get

P̂(t ) = �̂�̂�̂T , (14)

with �̂ being the diagonal matrix that stores the M eigenvalues
(λ̂0 = 1 � λ̂1 � λ̂2 . . . , with the first being the trivial eigen-
value that is equal to 1 given that P is a Markovian matrix)
and �̂ = [ϕ̂1, ϕ̂2, . . . , ϕ̂N ] ∈ RN×N whose columns ϕ̂i are the
eigenvectors of P̂.

Consequently, the CHARM manifold reduction, ŷi, is given
by the coordinates of the nonlinear projection of a point xi in
the reduced manifold latent k-dimensional space spanned by
the first k eigenvectors = [ϕ̂1, ϕ̂2, . . . , ϕ̂k] of the matrix P̂(t ):

ŷi = [λ̂1ϕ̂1(i), λ̂2ϕ̂2(i), . . . , λ̂kϕ̂k (i)] i = 1 . . . N. (15)

III. RESULTS

Here we tested CHARM on large-scale neuroimaging data
from over 1000 healthy human participants. First, we com-
pared CHARM with the two decomposition methods of PCA
(described in the Appendix) and harmonics. Second, we used
whole-brain modeling to reveal the underlying mechanisms
of CHARM. Finally, we showed how CHARM can reveal
the significant differences in critical dynamics between the
different brain states of wakefulness and sleep.

A. CHARM is significantly better than harmonics
for manifold reduction

We assessed the quality of the low-dimensional manifold
extracted with PCA, harmonics and CHARM. We system-
atically investigated the level of dimensionality reduction
for the three different frameworks and found that k = 7 is
the minimal value capturing high levels of reconstruction
in all frameworks (see details in the Appendix). In this re-
duced space we generated the reconstructed and source FC
matrices. Figure 2(a) (left panels) compare harmonics and
CHARM as a function of diffusion steps and a scale parameter
of the kernel with the width σ . In the first row of matri-
ces the color scale indicates the level of correlation, while
in the second row the color scale indicates the quadratic
errors between reconstructed and source FC matrices. As
can be seen the optimal value of σ is indicated by a star
and a box around the evolution over the diffusion steps. We
zoom in on this evolution in Fig. 2(a) (middle panel) which
includes the dispersion over participants of the level of cor-
relation and error as a function of the diffusion step. Note
that PCA does not depend on this parameter and therefore
shows the same value. Figure 2(a) (right panel) shows the
violinplots of the best level of correlation (across partici-
pants) for all three frameworks. The results show that all
three frameworks show very similar abilities in reconstruct-
ing the source signals which were not significantly different
(Wilcoxon nonparametric tests).

Yet, going beyond the static grand average nature of FC
reconstruction, we used the highly sensitive measure of edge-
centric metastability (ECM) to capture the full spacetime
dynamic (see Methods). Figure 2(b) (left panels) shows scat-
terplots for PCA, harmonics and CHARM measuring the
degree of correlation across participants of ECM for the
source and manifold spaces. CHARM significantly outper-
forms the other two frameworks. Figure 2(b) (middle panel)
shows the ability of each method to capture ECM as a function
diffusion steps. Figure 2(b) (right panel) shows violin plots
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FIG. 2. CHARM is better than PCA and harmonics for manifold reduction. (a) The quality of the low-dimensional manifold extracted with
PCA, harmonics and CHARM is assessed by comparing the reconstructed and source FC matrices for the low-dimensional manifold space
(k = 7). Left panels compare harmonics and CHARM as a function of diffusion steps and a scale parameter of the kernel (width σ ). The
color scale in the first row of matrices indicates the correlation and the second row indicates the quadratic errors between reconstructed and
source FC matrices. For the Harmonics and CHARM methods, the optimal value of σ is indicated by a star and a box around the evolution
over the diffusion steps. This evolution is shown even more clearly in the middle panel which also includes the dispersion over participants
of the level of correlation and error as a function of the diffusion steps (except for PCA which does not depend on this parameter). The final
panel shows the violinplots of the best level of correlation (across participants) for the three methods. As can be clearly seen, they all show
very similar abilities in reconstructing the source signals (nonsignificant differences, Wilcoxon nonparametric tests). (b) However, beyond
the static grand average nature of FC reconstruction, we were able to measure the ability of PCA, harmonics and CHARM to capture the
full spacetime dynamic, for which we used the sensitive measure of edge-centric metastability (ECM). We show the scatterplots for each of
them, measuring the degree of correlation across participants of ECM for the source and manifold spaces. As can be seen clearly, CHARM
outperforms PCA and harmonics. Similarly, the middle panel shows the ability of each method to capture ECM as a function of diffusion steps.
The right panel shows the violin plots for ECM at the optimal diffusion step for each framework. Again, as can be clearly seen from these two
panels, CHARM significantly outperforms the PCA and harmonics frameworks, suggesting that the nonlocal effects play a major role in brain
dynamics (p < 0.001, Wilcoxon nonparametric tests).

for ECM at the optimal diffusion step for each framework. As
can be seen from the plots, CHARM significantly outperforms
the PCA and harmonics frameworks (p < 0.001, Wilcoxon
nonparametric tests), suggesting that the nonlocal effects play
a major role in brain dynamics.

B. Whole-brain modeling reveals mechanistic
principles of CHARM

Figure 3(a) shows the principles of fitting a Hopf
whole-brain model to the large-scale HCP neuroimaging data

from 1003 human participants (see Methods). In Fig. 3(b), the
global coupling parameter of the whole-brain was varied to
obtain optimal fitting to the empirical Kuramoto metastability
(blue curve) of the whole-brain model’s Kuramoto
metastability (red curve) at g = 0.2. Interestingly, at this
optimal working point, the error of fit to the FC (green curve)
is also reaching a plateau. Importantly, the model’s Kuramoto
metastability is also maximal as an excellent proxy for
criticality.

But most importantly, as shown in Fig. 3(c), at the opti-
mal working point of the whole-brain model, CHARM not
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FIG. 3. Mechanistic principles of CHARM. Using whole-brain modeling we show that CHARM outperforms harmonics in capturing
nonlocality in brain dynamics. (a) We fitted a Hopf whole-brain model to the large-scale HCP neuroimaging data from 1003 participants.
(b) Varying the global coupling parameter showed optimal fitting to the empirical Kuramoto metastability (blue curve) of the whole-brain
model’s Kuramoto metastability (red curve) at g = 0.2. At this optimal working point, the error of fit to the FC (green curve) is also reaching
a plateau. Note that at this working point, the model’s Kuramoto metastability is also maximal, which is an excellent proxy for criticality
(see text). (c) Most importantly, at the optimal working point of the whole-brain model, CHARM not only shows the largest ECM correlation
between source and manifold spaces across participants but also significantly outperforms the harmonics framework. This demonstrates that
CHARM is particularly well suited for extracting the nonlocal effects driven by the criticality. Even more, given that the best fitting of the
whole-brain model is at the proxy for criticality, this reinforces the superiority of CHARM over harmonics to extract nonlocal critical effects
in empirical brain data. (d) To show the effects of the rare anatomical long-range (LR) exceptions to the general exponential distance rule of
brain wiring, we constructed two models with LR (LR) and without (no LR). (e) As can be seen, CHARM significantly outperforms harmonics
in capturing the amplification of the brain dynamics by LR in terms of the ECM correlation. (f) Reinforcing this, the figure plots the difference
between LR and no LR, showing the significant difference when using CHARM. (g) Equally, plotting the difference between harmonics and
CHARM as a function LR and no LR, shows again a significant difference favouring CHARM.

only shows the largest ECM correlation between source and
manifold spaces across participants but also significantly out-
performs the harmonics framework. This clearly shows that
CHARM is excellent in extracting the nonlocal effects driven
by criticality. Given that the best fitting of the whole-brain
model is at this proxy for criticality, this demonstrates the su-
periority of CHARM over harmonics for extracting nonlocal
critical effects in empirical brain data.

Figure 3(d) shows the general framework for investigating
the effects of the rare anatomical long-range (LR) exceptions
to the general exponential distance rule of brain wiring. As
can be seen, we constructed two models with LR (LR) and
without (no LR).

The results presented in Fig. 3(e) show that CHARM
significantly outperforms harmonics in capturing the ampli-
fication of the brain dynamics by LR in terms of the ECM

correlation. Furthermore, Fig. 3(f) reinforces this by plotting
the difference between LR and no LR. The results show signif-
icant difference when using CHARM compared to harmonics.
Finally, as shown in Fig. 3(g), which plots the difference
between harmonics and CHARM as a function LR and no LR,
CHARM significantly outperforms harmonics.

C. CHARM captures the distinct network interactions
between different brain states

Using CHARM on data from human participants in wake-
fulness and deep sleep shows the excellent capability of
CHARM to capture the distinct network interactions in the
latent manifold space. Figure 4(a) shows the two matrices of
the shifted functional connectivity between seven manifold
networks reflect different interactions in wakefulness (top)
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FIG. 4. CHARM captures the distinct network interactions between different brain states. (a) The two matrices of the shifted functional
connectivity between seven manifold networks reflect different interactions in wakefulness (top) and deep sleep (bottom). Importantly, there
are significant differences (white squares) between the two matrices (p < 0.05). (b) These time asymmetries are illustrated (for the top
20%) of arrows between the seven manifold networks for awake vs sleep, where the grey arrows correspond to negative and brown to
positive interactions, and their thickness to the value of these interactions. As can be seen the flow of interaction is very different for
wakefulness compared to deep sleep. Machine learning was able to separate these interactions with an accuracy of 84%. (c) The spatiotemporal
characteristics in the CHARM latent space can be captured by the Edge metastability which is significantly different between awake and sleep
(upper panel, p < 0.05). Similarly, the reconfiguration of the hierarchical information flow is captured by the measure of network directedness
of the shifted functional connectivity of the manifold network, which is also significantly different between awake and sleep (lower panel,
p < 0.01).

and deep sleep (bottom). As can been in the small black and
white matrix, there are significant differences (marked with
white squares) between the two matrices.

Figure 4(b) shows these time asymmetries for the top 20%,
illustrated by arrows between the seven manifold networks for
awake vs sleep, where the grey arrows correspond to negative
and brown to positive interactions, and their thickness to the
value of these interactions. The flow of interaction is clearly
very different for wakefulness compared to deep sleep. In fact,
machine learning significantly separate these interactions with
an accuracy of 84% (see Methods).

Figure 4(c) (upper panel) shows the spatiotemporal char-
acteristics in the CHARM latent space captured by ECM,
which is significantly different between awake and sleep.
Similarly, the reconfiguration of the hierarchical information
flow is shown in Fig. 4D (lower panel) which captures by
the measure of network directedness of the shifted functional
connectivity of the manifold network. This is also signifi-
cantly different between awake and sleep. Interestingly, as
shown in the Appendix, we used CHARM as a proxy of
criticality in a given brain state since it is able to capture
such long-range interactions, while the harmonics framework
is not. We found that compared to harmonics CHARM was
able to detect a significantly larger correlation between source
and manifold ECM (Fig. 6 in the Appendix). This suggests
that the long-range interactions are less relevant in deep sleep,
which is thus likely to exhibit less critical dynamics than
wakefulness and thus support the findings of Sooter and
colleagues [25].

IV. DISCUSSION

Recent research has shown that higher-order interac-
tions naturally emerge from dimension reduction, providing

insights into the origin of higher-order interactions in complex
systems [26]. Here we were inspired by the mathemati-
cal structure of Schrödinger’s wave equation to create the
CHARM framework that can perform the dimensional mani-
fold reduction able to extract nonlocality in critical spacetime
brain dynamics. We compared CHARM to the powerful
harmonic decomposition method when used on a large neu-
roimaging dataset of over 1000 people. Importantly, CHARM
outperformed harmonics in terms capturing the underlying
higher-order interactions in spatiotemporal brain dynamics.
We then demonstrated that this is due to the ability of
CHARM to capture the critical, nonlocal and long-range
nature of brain dynamics, by established the underlying mech-
anisms through using a precise whole-brain model. Criticality
in brain dynamics and how low-dimensional criticality is
preserved and can be embedded in high-dimensional brain
dynamics

Importantly, we also demonstrated that CHARM reveals
the significantly different critical dynamics of wakefulness
and sleep in the manifold network interactions. Taken to-
gether, CHARM is a promising theoretical framework for
capturing the complex network dynamics in neuroscience.

Overall, the results suggest that the low-dimensional man-
ifold networks revealed by CHARM could explain how the
human brain is able to solve complex computational problems
despite the relative slowness of neuronal communication.
Moreover, it is important to note that we use the mathemat-
ical structure of Schrödinger’s equation (which is particularly
suited for expressing nonlocality) to allow for the discovery of
the low-dimensional manifolds of empirical brain dynamics.
In contrast to the single neuron doctrine arising from the
debates between Nobel Prize winners Ramón y Cajal and
Golgi [27], this strongly suggests that brain computation does
not primarily happen locally, but that computation is mainly
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a long-range network effect. As such, the results demonstrate
the key causal role of manifold networks as a fundamental
organizing principle of brain function at the whole-brain scale,
providing evidence that networks of brain regions rather than
individual brain regions are the key computational engines of
critical brain dynamics.

ACKNOWLEDGMENTS

G.D. is supported by Grant PID2022-136216NB-I00
funded by MICIU/AEI/10.13039/501100011033 and by
“ERDF A way of making Europe”, ERDF, EU, Project
NEurological MEchanismS of Injury, and Sleeplike cellular
dynamics (NEMESIS) (ref. 101071900) funded by the EU
ERC Synergy Horizon Europe, and AGAUR research support
grant (ref. 2021 SGR 00917) funded by the Department of
Research and Universities of the Generalitat of Catalunya.
Y.S.P. is supported by the project NEurological MEchanismS
of Injury, and Sleep-like cellular dynamics (NEMESIS) (ref.
101071900) funded by the EU ERC Synergy Horizon Europe.
M.L.K. is supported by the Centre for Eudaimonia and Human
Flourishing (funded by the Pettit and Carlsberg Foundations)
and Center for Music in the Brain (funded by the Danish
National Research Foundation, DNRF117).

APPENDIX

1. Empirical data acquisition and preprocessing:
Human Connectome Project

Resting state data was acquired from the Human Connec-
tome Project described below in details.

Ethics

The Washington University–University of Minnesota
(WU-Minn HCP) Consortium obtained full informed consent
from all participants, and research procedures and ethical
guidelines were followed in accordance with Washington
University institutional review board approval (Mapping the
Human Connectome: Structure, Function, and Heritability;
IRB No. 201204036).

Participants

The data set used for this investigation was selected from
the March 2017 public data release from the Human Con-
nectome Project (HCP) where we chose a sample of 1003
participants, all of whom have resting state data.

Neuroimaging acquisition for fMRI HCP

The 1003 HCP participants were scanned on a 3-T
connectome-Skyra scanner (Siemens). We used one resting
state fMRI acquisition of approximately 15 min acquired on
the same day, with eyes open with relaxed fixation on a
projected bright cross-hair on a dark background. The HCP
website [28] provides the full details of participants, the ac-
quisition protocol and preprocessing of the data for resting
state. Below we have briefly summarized these.

Neuroimaging acquisition for fMRI HCP

The 1003 HCP participants were scanned on a 3-T
connectome-Skyra scanner (Siemens). We used one resting
state fMRI acquisition of approximately 15 min acquired on
the same day, with eyes open with relaxed fixation on a
projected bright cross-hair on a dark background. The HCP
website [28] provides the full details of participants, the acqui-
sition protocol and preprocessing of the data for both resting
state. Below we have briefly summarized these.

The preprocessing of the HCP resting state is described in
details on the HCP website. Briefly, the data is preprocessed
using the HCP pipeline which is using standardized meth-
ods using FSL (FMRIB Software Library), FreeSurfer, and
the Connectome Workbench software [29,30]. This standard
preprocessing included correction for spatial and gradient dis-
tortions and head motion, intensity normalization and bias
field removal, registration to the T1 weighted structural image,
transformation to the 2 mm Montreal Neurological Institute
(MNI) space, and using the FIX artefact removal procedure
[30,31]. The head motion parameters were regressed out and
structured artefacts were removed by ICA + FIX process-
ing (Independent Component Analysis followed by FMRIB’s
ICA-based X-noiseifier [32,33]). Preprocessed timeseries of
all grayordinates are in HCP CIFTI grayordinates standard
space and available in the surface-based CIFTI file for each
participants for resting state.

We used a custom-made Matlab script using the
ft_read_cifti function (Fieldtrip toolbox [34]) to extract the
average timeseries of all the grayordinates in each region
of the Mindboggle-modified Desikan-Killiany parcellation
[35] with a total of 62 cortical regions (31 regions per
hemisphere) [36], which are defined in the HCP CIFTI
grayordinates standard space. The BOLD timeseries were fil-
tered using a second-order Butterworth filter in the range of
0.008-0.08 Hz.

2. Empirical data acquisition and preprocessing:
Human sleep data

Ethics

Written informed consent was obtained, and the study was
approved by the ethics committee of the Faculty of Medicine
at the Goethe University of Frankfurt, Germany.

Participants

We used fMRI- and PSG data from 18 participants taken
from a larger database that reached all four stages of PSG
[37,38]. Exclusion criteria focussed on the quality of the con-
comitant acquisition of EEG, EMG, fMRI, and physiological
recordings.

Acquisition and preprocessing of fMRI and polysomnography data

Neuroimaging fMRI was acquired on a 3 T system
(Siemens Trio, Erlangen, Germany) with the following set-
tings: 1505 volumes of T2*-weighted echo planar images with
a repetition time (TR) of 2.08 s, and an echo time of 30 ms;
matrix 64 × 64, voxel size 3 × 3 × 2 mm3, distance factor
50%, FOV 192 mm2.
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The EPI data were realigned, normalized to MNI space,
and spatially smoothed using a Gaussian kernel of 8 mm3

FWHM in SPM8 [39].
Spatial downsampling was then performed to a 4 × 4 ×

4 mm resolution. From the simultaneously recorded ECG and
respiration, cardiac- and respiratory-induced noise compo-
nents were estimated using the RETROICOR method [40],
and together with motion parameters these were regressed out
of the signals. The data were temporally band-pass filtered in
the range 0.008–0.08 Hz using a sixth-order Butterworth filter.
We extracted the timeseries in the DK62 parcellation [41].

Simultaneous PSG was performed through the recording of
EEG, EMG, ECG, EOG, pulse oximetry, and respiration. EEG
was recorded using a cap (modified BrainCapMR, Easycap,
Herrsching, Germany) with 30 channels, of which the FCz
electrode was used as reference. The sampling rate of the
EEG was 5 kHz, and a low-pass filter was applied at 250 Hz.
MRI and pulse artefact correction were applied based on the
average artefact subtraction method [42] in Vision Analyzer2
(Brain Products, Germany). EMG was collected with chin
and tibial derivations, and as the ECG and EOG recorded
bipolarly at a sampling rate of 5 kHz with a low-pass filter at
1 kHz. Pulse oximetry was collected using the Trio
scanner, and respiration with MR-compatible devices
(BrainAmp MR+, BrainAmp ExG; Brain Products, Gilching,
Germany).

Participants were instructed to lie still in the scanner with
their eyes closed and relax. Sleep classification was performed
by a sleep expert based on the EEG recordings in accordance
with the AASM criteria (2007). Results using the same data
and the same preprocessing has previously been reported
[37,38].

3. Neuroimaging structural connectivity and extraction
of functional timeseries

Parcellations

All neuroimaging data was processed using the DK80 par-
cellation. This consists of the Mindboggle-modified Desikan-
Killiany parcellation [35] with a total of 62 cortical regions
(31 regions per hemisphere) [36] , as well as well 18 sub-
cortical regions (nine regions per hemisphere): hippocampus,
amygdala, subthalamic nucleus (STN), globus pallidus inter-
nal segment (GPi), globus pallidus external segment (GPe),
putamen, caudate, nucleus accumbens and thalamus. This cre-
ated a parcellation with 80 regions in the DK80 parcellation;
also precisely defined in the HCP CIFTI grayordinates stan-
dard space with a total of 91282 grayordinates (sampled at
2 mm3).

4. Empirical data: Diffusion MRI for tractography

Neuroimaging acquisition for dMRI HCP

We obtained multi-shell diffusion-weighted imaging data
from 985 subjects of the HCP 1200 data release. The standard
acquisition protocol takes 59 min (six runs of each approxi-
mately 9 min and 50 s). We also obtained diffusion spectrum
and T2-weighted imaging data from 32 participants from the
HCP database who were scanned for a full 89 min. The acqui-

sition parameters for both groups are described in details on
the HCP website [43].

Generating structural connectivity matrices from dMRI

To be as precise as possible for the model fitting, we esti-
mated the structural connectivity matrix from two HCP dMRI
datasets. The first dataset, Standard HCP dMRI, uses the
highest quality multi-shell diffusion data acquired in sequence
taking 59 min from 985 HCP participants (HCP data acquired
at Washington University in St. Louis) [44,45] (see HCP spec-
ifications on their website). The second dataset, Special HCP
dMRI, uses even better protocols taking 89 min for each of
32 HCP participants at the MGH center. Both dMRI datasets
were preprocessed and made available as part of the freely
available Lead-DBS software package [46].

The precise preprocessing is described in details in Horn
and colleagues [47], but briefly, the data was processed using
a generalized q-sampling imaging algorithm implemented in
DSI studio [48]. Segmentation of the T2-weighted anatomical
images produced a white-matter mask and coregistering the
images to the b0 image of the diffusion data using SPM12.
In each HCP participant, 200 000 fibers were sampled within
the white-matter mask. Fibers were transformed into MNI
space using Lead-DBS [49]. The methods used the algorithms
for false-positive fibers shown to be optimal in recent open
challenges [50,51]. The risk of false positive tractography
was reduced in several ways. Most importantly, this used the
tracking method achieving the highest (92%) valid connection
score among 96 methods submitted from 20 different research
groups in a recent open competition [50]. We subsequently
used the standardized methods in Lead-DBS to produce the
structural connectomes for the DK80 parcellation used in the
whole-brain Hopf model.

5. Theoretical methods

Reconstruction in the source fMRI Space
for the generalization dataset

To test the ability of a given manifold to reconstruct the
source signal on a generalisation set of data, we need to
solve the “preimage” problem. Let us define a diffusion map
(Gaussian or Complex) on a training set. The generalisation
set can be defined by G = [x1, x2, . . . , xNG ] ∈ RM×NG , given
by NG time points of BOLD signal of the M brain regions that
were not included in the training set used for the definition
of the manifold space. We can then measure the ability of
manifolds generated by different methods of reconstructing
and generalizing the source data.

Reconstruction using harmonic decomposition methods

Explicit inverse mappings from manifold to source space
are not well-defined for nonlinear manifold learning al-
gorithms (such as harmonic decomposition and CHARM)
[52–54]. Most often, the lifting of predictions made on the
manifold back to the source space problem is solved by using
the Nyström extension methodology (Nyström, 1929), which
has been derived from the solution of the Fredholm integral
equation of the second kind. Here, we adopted this widely
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used framework [52–54], which can be described by

X G = X�k�
−T
t �T

k PG (A1)

where �k = [ϕ1,ϕ2, . . . ,ϕk] is the matrix of the first k eigen-
vectors spanning the reduced manifold space. For the case of
Gaussian diffusion, �t is the corresponding diagonal matrix
for the k first eigenvalues at t-time diffused steps, i.e., the
diagonal elements are [λt

0, λ
t
1, . . . , λ

t
k].

For the case of CHARM, �t is the diagonal matrix for the k
first eigenvalues of the transition matrix P̂(t ), i.e., the diagonal
elements are [λ̂0, λ̂1, . . . , λ̂k]. The matrix PG ∈ RN×NG is
given by the first N rows and the last NG columns of the matrix
PAll ∈ R(N+NG )×(N+NG ) defined by the t-time diffused steps
transition matrix for all data points included in the training
and generalisation set. This matrix PAll is computed with the
corresponding for each case, affinity matrix for all data points,
that is for the harmonic decomposition: W ∈ R(N+NG )×(N+NG )

(for the each single time step diffusion) and for CHARM:
Ŵ

t ∈ R(N+NG )×(N+NG ). In other words, as before PAll belongs
to the weighted graph of the data set, but now including all
training and generalisation data points, that is N + NG time
points observation of the BOLD signal of the M brain regions.

Quantitative measurements characterizing the manifold reduction

For comparing the quality of the manifold reduction ob-
tained by the two frameworks (harmonic decomposition and
CHARM), we compute the (1) reconstruction error, (2) edge
metastability, and (3) conservation of edge metastability be-
tween source and manifold spaces.

Reconstruction Error

We assess the quality of the manifold reduction in the
latent space by comparing the empirical and reconstructed
functional connectivity (FC) for each participant. Given the
matrix BOLD signal observation X , we define for each brain
region m, the time series of observations sm by the m-row of
X . The empirical FC (FCemp) is computed by the Pearson
correlation, that is the elements are given by

FCemp
ml = E[(sm − μm)(sl − μl )]

σmσl
, (A3)

where for brain regions m and l , μm and μl are the corre-
sponding mean values across time, and σm and σl are the
corresponding standard deviations across time. In the equa-
tion, E[] denotes the expected value operator. Similarly, the
FC for the reconstructed time series (FCrec) is computed by

FCrec
ml = E[(rm − μm)(rl − μl )]

σmσl
, (A4)

where rm are the time series of reconstructed timeseries for
the m-row of X . We use two different metrics for comparing
the functional connectivity. Let us denote by f emp and f rec the
elements of the corresponding FC matrices. We compute the
mean-squared error for M regions

ErrFC = 1

M2

∑
k

(
f emp
k − f rec

k

)2 = 1

M2

∑
m,l

(
FCemp

ml −FCrec
ml

)2
,

(A5)

and the correlation between the elements of the FC matrices
is given by

CorrFC = E[( f emp − μemp)( f rec − μrec)]

σempσrec
, (A6)

where μemp, μrec are the corresponding mean values, and
σemp, σrec the corresponding standard deviations of the ele-
ments.

Edge-metastability in manifold space

The measure of edge-metastability was recently introduced
as sensitive way of comparing matrices inspired by the spa-
tiotemporal variability of edge time series, introduced to
capture fine-scale dynamics in fMRI recordings [55–57]. The
resulting edge time series are formed by a simple procedure
involving (1) z-scoring each of the two nodal time series
independently and (2) and forming an edge time series by
taking the element-wise product of the z-scored time series.
Values of the edge time series reflect the cofluctuation pattern
between nodes. A positive cofluctuation results when, at a
specific point in time, both series are concordant relative to
each of their mean signals. A negative cofluctuation value
results when, at a specific point in time, one time series is
above the mean (a positive value) and the other is below the
mean (a negative value). Notably, the mean of an edge time
series equals the Pearson correlation. Edge time series have
the same temporal resolution as the original data, allowing
for the analysis of instantaneous (i.e., a single time frame)
cofluctuation patterns. This data has the dimensionality of
edge-by-time.

We used this framework to compute for each participant
the edge-metastability, which as just shown is a measure of
the variability of the cofluctuation patterns. This is a general-
isation of the functional connectivity dynamics but computed
for a slicing window of only one time point. For a given
participant, we define a spatiotemporal series S ∈ RNS×NT

where the NS rows correspond to space dimensions and the
NT columns to the timepoints. We note that in source space
this matrix corresponds to X , while in the manifold space
corresponds to Y . First, we z-score across the columns the
time series for each space dimension, where the z-scored
matrix S across its columns is called S̃. The corresponding
edge-centered matrix ES = [e1, . . . , eNT ] ∈ RNS (NS−1)×NT is
defined as follows. Each column corresponds to a timepoint
t , where the column is defined as a vector combining all
pairwise combinations of the spatial dimension at time t . With
NS space dimensions, this results in NS (NS − 1) pairs. From
this matrix of pairs, we define the corresponding functional
connectivity matrix FCDS ∈ RNT ×NT ,

FCDS,ml =
(
eT

m · el
)

‖em‖ ‖el‖ , (A7)

where the dot product denotes scalar product.
Let us denote by gS the upper diagonal elements of the

FCDS matrix. Then, the edge-metastability of the spatiotem-
poral signal S (with variance σ 2

g ) is given by the Gaussian
entropy

HS = 1
2 log

(
2πσ 2

g

) + 1
2 . (A8)
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FIG. 5. Determining manifold dimensionality. (a) The figure
shows the correlation between the reconstructed FC and the em-
pirical FC of the generalized data set. (b) Similar but showing the
quadratic error.

To measure the degree of spatiotemporal variability in
latent space, we will use Eq. (A7) for the spatiotemporal
matrix Y in the different manifold spaces corresponding to
the different framewoeks. We compute the edge-metastability
in manifold space, HY , for each participant.

Conservation of edge-metastability between source
and manifold space

To quantify how well the empirical edge-metastability in
source space is expressed in the different manifold spaces, we
calculate the edge-metastability for each participant in source
space, i.e., HX and in manifold space HY , and perform the
correlation between these two measurements across partic-
ipants. We use �XY to denote this mass of conservation of
metastability between source and manifold space.

Time asymmetry between networks in manifold space

We quantified the time asymmetry between the networks in
the manifold by computing the shifted functional connectivity
as follows:

FCshifted
ml = E[(nm − μm)(n̂l − μl )]

σmσl
, (A9)

where the time series of observations nm is the time series
of the network m, and n̂l is the time series of network i
shifted one TR (2.08 s) forward in time. The corresponding
mean values across time are μm and μl ; σm and σl stand
for the corresponding standard deviations across time. In the
equation, E[] denotes the expected value operator.

Investigation of manifold dimensionality

To assess the quality of the low-dimensional manifold ex-
tracted with PCA, harmonics and CHARM, we systematically
investigated the level of dimensionality reduction for the three
different frameworks. Figure 5 shows the level of reconstruc-
tion of the empirical FC on the generalisation data set (as
described above) as a function of k for all three frameworks.
Figure 5(a) shows the correlation between the reconstructed
FC and the empirical FC, while Fig. 5(b) shows the quadratic
error between those matrices. For CHARM, we used the opti-
mal parameters shown in by the stars in Fig. 2(a) (left panel),
namely, σ = 300 and diffusion step of 2, while for Harmonics

we used σ = 400 and diffusion step of 1. Figure 5 shows
very similar correlations for different values of k for each
framework. This is convenient since we can choose the same
k parameter for all of the framework. Here we chose k = 7
since this is where the average level of correlation between
empirical and reconstructed FCs is higher than 0.8 for all three
frameworks (PCA: 0.84, harmonics: 0.81, CHARM: 0.81). In
other words, we are able to strongly reduce the dynamics in all
frameworks from empirical N = 62 to a latent space of k = 7.

6. Whole-brain model

To demonstrate the effects of long-range functional cor-
relations and of rare anatomical long-range connections, we
used whole-brain modeling which links anatomical structural
connectivity with functional dynamics through a model of
local dynamics in each brain region [58–61]. The anatomi-
cal structural connectivity (SC) is determined in vivo using
diffusion MRI (dMRI) in conjunction with probabilistic trac-
tography. The whole-brain model creates a suitable balance
between complexity and realism by using the connectivity
between brain regions (reflected in SC) to reproduce the
empirically measured whole-brain dynamics included those
measured with fMRI [61]. Such whole-brain models have had
widespread success in explaining the brain dynamics of many
different brain states [58,59,61].

Here, the local dynamics of each brain region are mod-
eled using a Stuart-Landau oscillator, which is equivalent to
the normal form of a supercritical Hopf bifurcation. This
is a powerful model for examining the shift from noisy to
oscillatory dynamics [62]. Whole-brain Hopf models have
been able to replicate key aspects of brain dynamics observed
in electrophysiology [63,64], magnetoencephalography [65],
and fMRI [66,67]. Specifically, the whole-brain dynamics of
neuroimaging data with timeseries from a parcellation of total
M regions can be expressed by coupling the local dynamics
of M Stuart-Landau oscillators coupled via the connectivity
matrix C:

dz j

dt
= (a j + iω j )z j − |z j |2z j + g

N∑
k=1

Cjk (zk − z j ) + η j,

(A10)

where for the oscillator in region j, the complex variable z j

denotes the state (z j = x j + iy j), η j is additive uncorrelated
Gaussian noise with variance σ 2 (for all j), ω j is the intrinsic
node frequency, and a j is the node’s bifurcation parameter.
Within this model, the intrinsic frequency ω j of each node is
in the 0.008–0.08 Hz band, which has been shown to be the
optimal capturing neural dynamics. The intrinsic frequencies
were estimated from the data, as given by the averaged peak
frequency of the narrowband blood-oxygen-level-dependent
(BOLD) signals of each brain region. The global coupling
parameter is denoted by g. For a j > 0, the local dynam-
ics settle into a stable limit cycle, producing self-sustained
oscillations with frequency ω j/(2π ). For a j < 0, the local
dynamics present a stable spiral point, producing damped or
noisy oscillations in the absence or presence of noise, respec-
tively. The fMRI signals were modeled by the real part of the
state variables, i.e., x j = Real(z j ).
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It has been shown that the best working point for fitting
whole-brain neuroimaging dynamics is at the brink of the bi-
furcation, that is with a j slightly negative but very near to zero
(usually a j = −0.02) [67]. In the results, we show that for
fitting the HCP resting data, the position where the coupling
parameter achieve the best fitting is also critical, in the sense
that is maximizing the variability across time of the Kuramoto
order parameter (also called Kuramoto metastability). The
Kuramoto order parameter is a measure of synchronization
between the different brain regions, and is given by

R(t ) =
∣∣∣∣∣

M∑
k=1

eiϕk (t )

∣∣∣∣∣, (A11)

where φk (t ) are the phases of the spatiotemporal data (em-
pirical or simulations), extracted by the classical Hilbert
transform. The Kuramoto metastability is defined by the vari-
ance of R across time. The maximal value of R obtained at
the optimal fitting point can be used as a proxy of criticality,
given that the variability of R can be thought of as the sus-
ceptibility. It is well-known that a maximum of susceptibility
corresponds to a trace criticality and consequently provides a
meaningful measure of the relevance of long-range functional
correlations.

7. Criticality in wakefulness and deep sleep

A proxy of criticality in a brain state is to detect the role
of long-range interactions as discussed above. Since CHARM
is able to capture such long-range interactions, while the
harmonics framework is not (shown in the results for the
whole-brain model), this fact offers an opportunity for deter-
mining whether a given brain state is likely to be critical. In
other words, if CHARM is able to detect a significantly larger
correlation between source and manifold ECM compared to
harmonics, then this would be a signature of an underlying
criticality. As can be seen in Fig. 6, this is exactly what we
found for wakefulness (compare the two upper panels). In
other words, wakefulness is likely to be critical. However,
as can be seen from the lower two panels, this difference is
not found for deep sleep. This suggest that the long-range
interactions are less relevant in deep sleep, which is thus likely
to exhibit less critical dynamics. These findings shed new
light on the ongoing debate in the field about whether the
brain operates closer to criticality [11,25,68,69]. Similar to
the findings of Sooter and colleagues [25], it would appear
that the awake brain operates closer to criticality than when in
deep sleep.

8. Principal components analysis

PCA is a classic method for reducing the dimensionality
of linear Gaussian data. Formally, this is a statistical tech-
nique for reducing the dimensionality of a dataset (from M
to k dimensions given N timepoints observations). This is
accomplished by linearly transforming the data into a new
coordinate system where (most of) the variation in the data

FIG. 6. Investigating a proxy for criticality in wakefulness and
sleep. We investigated the two brain states of wakefulness and deep
sleep by comparing the ability of harmonics and CHARM to capture
the full spacetime dynamic using the sensitive measure of ECM.
Only for wakefulness, did we find a significant correlation between
source and manifold space ECM (p < 0.01, Pearson correlation).
However, this was not for harmonics, and not in deep sleep using
CHARM and harmonics. This suggests that the awake brain has more
critical dynamics in wakefulness than in deep sleep.

can be described with fewer dimensions than the initial data.
The main limitation of PCA pertains to the restrictions of lin-
earity and Gaussianity. Mathematically, PCA is the orthogonal
transformation given by

Y = V T X , (A12)

where V ∈ RM×k is a matrix, whose columns are given
by the first k eigenvectors (ordered according to the corre-
sponding decreasing eigenvalues) of the covariance matrix
XX T ∈ RM×M . Note that if k = M, V T is a rotation matrix
satisfying |det(V T )| = 1 and V T = V −1.

9. Support vector machine for classification

We used machine learning for both pattern separation
and classification by using a support vector machine (SVM)
with Gaussian kernels as implemented in the Matlab func-
tion fitcecoc. The function returns a full, trained, two class,
error-correcting output codes (ECOC) model. This is achieved
using the predictors in the input with class labels. The function
uses K (K–1)/2 binary SVM models using the one-versus-
one coding design, where we used K = 2 as the number of
unique class labels. The output was two classes corresponding
to the conditions (after versus before, or responder versus non-
responder, or psilocybin versus escitalopram treatment). The
input features used for classification were shifted functional
connectivity (for each participant and condition). We trained
the SVM with the leave-one-out cross-validation procedure,
i.e., by randomly choosing one patient for generalisation and
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the whole rest for training, repeated and shuffled 1000 times.
Furthermore, the training set was balanced in terms of number

of examples for each class label and randomly selecting the
participants in each class for each shuffling iteration.
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[13] R. Gămănuţ, H. Kennedy, Z. Toroczkai, M. Ercsey-Ravasz, D.
C. Van Essen, K. Knoblauch, and A. Burkhalter, The mouse
cortical connectome, characterized by an ultra-dense cortical
graph, maintains specificity by distinct connectivity profiles,
Neuron 97, 698 (2018).

[14] M. Ercsey-Ravasz, N. T. Markov, C. Lamy, D. C. Van Essen,
K. Knoblauch, Z. Toroczkai, and H. Kennedy, A predictive net-
work model of cerebral cortical connectivity based on a distance
rule, Neuron 80, 184 (2013).

[15] P. Theodoni, P. Majka, D. H. Reser, D. K. Wójcik, M. G. P.
Rosa, and X.-J. Wang, Structural attributes and principles of
the neocortical connectome in the marmoset monkey, Cereb.
Cortex. 32, 15 (2022).

[16] G. Deco, Y. Sanz Perl, P. Vuust, E. Tagliazucchi, H. Kennedy,
and M. L. Kringelbach, Rare long-range cortical connections

enhance human information processing, Curr. Biol. 31, 4436
(2021).

[17] S. Atasoy, I. Donnelly, and J. Pearson, Human brain net-
works function in connectome-specific harmonic waves, Nat.
Commun. 7, 10340 (2016).

[18] M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensional-
ity reduction and data representation, Neural Comput. 15, 1373
(2003).

[19] W. Gilpin, Generative learning for nonlinear dynamics, Nat.
Rev. Phys. 6, 194 (2024).

[20] E. Schrödinger, An undulatory theory of the mechanics of
atoms and molecules, Phys. Rev. 28, 1049 (1926).

[21] E. Schrödinger, Quantisierung als eigenwertproblem (Erste mit-
teilung), Ann. Phys. 384, 361 (1926).

[22] W. P. Schleich, D. M. Greenberger, D. H. Kobe, and M. O.
Scully, Schrödinger equation revisited, Proc. Natl. Acad. Sci.
USA 110, 5374 (2013).

[23] S. Rosenberg, The Laplacian on a Riemannian Manifold
(Cambridge University Press, Cambridge, UK, 1997).

[24] E. Schrödinger, Collected Papers on Wave Mechanics (Chelsea
Publishing, New York, NY, 1982).

[25] J. S. Sooter, A. J. Fontenele, C. Ly, A. K. Barreiro, and W. L.
Shew, Cortex deviates from criticality during action and deep
sleep: A temporal renormalization group approach, bioRxiv
2024.05.29.596499.

[26] V. Thibeault, A. Allard, and P. Desrosiers, The low-rank hy-
pothesis of complex systems, Nat. Phys. 20, 294 (2024).

[27] F. Lopez-Munoz, J. Boya, and C. Alamo, Neuron theory, the
cornerstone of neuroscience, on the centenary of the Nobel
Prize award to Santiago Ramon y Cajal, Brain Res. Bull. 70,
391 (2006).

[28] http://www.humanconnectome.org/
[29] M. F. Glasser et al., The minimal preprocessing pipelines

for the Human Connectome Project, Neuroimage 80, 105
(2013).

[30] S. M. Smith et al., Resting-state fMRI in the Human Connec-
tome Project, Neuroimage 80, 144 (2013).

[31] T. Navarro Schroder, K. V. Haak, N. I. Zaragoza Jimenez, C.
F. Beckmann, and C. F. Doeller, Functional topography of the
human entorhinal cortex, eLife 4, e06738 (2015).

[32] G. Salimi-Khorshidi, G. Douaud, C. F. Beckmann, M. F.
Glasser, L. Griffanti, and S. M. Smith, Automatic denoising
of functional MRI data: Combining independent component
analysis and hierarchical fusion of classifiers, Neuroimage 90,
449 (2014).

[33] L. Griffanti et al., ICA-based artefact removal and accelerated
fMRI acquisition for improved resting state network imaging,
Neuroimage 95, 232 (2014).

[34] R. Oostenveld, P. Fries, E. Maris, and J. M. Schoffelen, Field-
Trip: Open source software for advanced analysis of MEG,
EEG, and invasive electrophysiological data, Comput. Intell.
Neurosci. 2011, 156869 (2011).

[35] R. S. Desikan et al., An automated labeling system for subdi-
viding the human cerebral cortex on MRI scans into gyral based
regions of interest, Neuroimage 31, 968 (2006).

014410-13

https://doi.org/10.1038/s41598-022-05053-w
https://doi.org/10.1038/s42005-023-01192-2
https://doi.org/10.1073/pnas.0911855107
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1073/pnas.0905267106
https://doi.org/10.1196/annals.1440.011
https://doi.org/10.1016/j.tics.2021.09.005
https://doi.org/10.1038/s42003-023-05001-y
https://doi.org/10.3389/fnsys.2013.00042
https://doi.org/10.1371/journal.pcbi.1002312
https://doi.org/10.1098/rsif.2015.1027
https://doi.org/10.1126/sciadv.adj9303
https://doi.org/10.1016/j.neuron.2017.12.037
https://doi.org/10.1016/j.neuron.2013.07.036
https://doi.org/10.1093/cercor/bhab191
https://doi.org/10.1016/j.cub.2021.07.064
https://doi.org/10.1038/ncomms10340
https://doi.org/10.1162/089976603321780317
https://doi.org/10.1038/s42254-024-00688-2
https://doi.org/10.1103/PhysRev.28.1049
https://doi.org/10.1002/andp.19263840404
https://doi.org/10.1073/pnas.1302475110
https://doi.org/10.1038/s41567-023-02303-0
https://doi.org/10.1016/j.brainresbull.2006.07.010
http://www.humanconnectome.org/
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2013.05.039
https://doi.org/10.7554/eLife.06738
https://doi.org/10.1016/j.neuroimage.2013.11.046
https://doi.org/10.1016/j.neuroimage.2014.03.034
https://doi.org/10.1155/2011/156869
https://doi.org/10.1016/j.neuroimage.2006.01.021


DECO, SANZ PERL, AND KRINGELBACH PHYSICAL REVIEW E 111, 014410 (2025)

[36] A. Klein and J. Tourville, 101 labeled brain images and a con-
sistent human cortical labeling protocol, Front. Neurosci. 6, 171
(2012).

[37] E. Tagliazucchi and H. Laufs, Decoding wakefulness levels
from typical fMRI resting-state data reveals reliable drifts be-
tween wakefulness and sleep, Neuron 82, 695 (2014).

[38] A. B. A. Stevner et al., Discovery of key whole-brain transitions
and dynamics during human wakefulness and non-REM sleep,
Nat. Commun. 10, 1035 (2019).

[39] www.fil.ion.ucl.ac.uk/spm/
[40] G. H. Glover, T. Q. Li, and D. Ress, Image-based method

for retrospective correction of physiological motion ef-
fects in fMRI: RETROICOR, Magn. Reson. Med. 44, 162
(2000).

[41] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F.
Crivello, O. Etard, N. Delcroix, B. Mazoyer, and M. Joliot,
Automated anatomical labeling of activations in SPM using a
macroscopic anatomical parcellation of the MNI MRI single-
subject brain, Neuroimage 15, 273 (2002).

[42] P. J. Allen, G. Polizzi, K. Krakow, D. R. Fish, and L. Lemieux,
Identification of EEG events in the MR scanner: The problem
of pulse artifact and a method for its subtraction, Neuroimage
8, 229 (1998).

[43] K. Setsompop et al., Pushing the limits of in vivo diffusion
MRI for the Human Connectome Project, Neuroimage 80, 220
(2013).

[44] N. Li et al., A unified connectomic target for deep brain stimula-
tion in obsessive-compulsive disorder, Nat. Commun. 11, 3364
(2020).

[45] D. C. Van Essen, S. M. Smith, D. M. Barch, T. E. Behrens, E.
Yacoub, K. Ugurbil, and W. U.-M. H. Consortium, The WU-
Minn Human Connectome Project: An overview, Neuroimage
80, 62 (2013).

[46] http://www.lead-dbs.org/
[47] A. Horn, W. J. Neumann, K. Degen, G. H. Schneider, and A.

A. Kuhn, Toward an electrophysiological “sweet spot” for deep
brain stimulation in the subthalamic nucleus, Hum. Brain Mapp.
38, 3377 (2017).

[48] http://dsistudio.labsolver.org
[49] A. Horn and F. Blankenburg, Toward a standardized structural-

functional group connectome in MNI space, Neuroimage 124,
310 (2016).

[50] K. H. Maier-Hein et al., The challenge of mapping the human
connectome based on diffusion tractography, Nat. Commun. 8,
1349 (2017).

[51] K. G. Schilling, A. Daducci, K. Maier-Hein, C. Poupon, J.
C. Houde, V. Nath, A. W. Anderson, B. A. Landman, and
M. Descoteaux, Challenges in diffusion MRI tractography—
Lessons learned from international benchmark competitions,
Magn. Reson. Imaging 57, 194 (2019).

[52] N. Evangelou, F. Dietrich, E. Chiavazzo, D. Lehmberg, M.
Meila, and I. G. Kevrekidis, Double diffusion maps and their
latent harmonics for scientific computations in latent space, J.
Comput. Phys. 485, 112072 (2023).

[53] D. G. Patsatzis, L. Russo, I. G. Kevrekidis, and C. Siettos, Data-
driven control of agent-based models: An equation/variable-
free machine learning approach, J. Comput. Phys. 478, 111953
(2023).

[54] P. G. Papaioannou, R. Talmon, I. G. Kevrekidis, and C. Siettos,
Time-series forecasting using manifold learning, radial basis
function interpolation, and geometric harmonics, Chaos 32,
083113 (2022).

[55] J. Faskowitz, F. Z. Esfahlani, Y. Jo, O. Sporns, and R. F. Betzel,
Edge-centric functional network representations of human cere-
bral cortex reveal overlapping system-level architecture, Nat.
Neurosci. 23, 1644 (2020).

[56] O. Sporns, J. Faskowitz, A. S. Teixeira, S. A. Cutts, and R.
F. Betzel, Dynamic expression of brain functional systems
disclosed by fine-scale analysis of edge time series, Netw.
Neurosci. 5, 405 (2021).

[57] F. Zamani Esfahlani, Y. Jo, J. Faskowitz, L. Byrge, D. P.
Kennedy, O. Sporns, and R. F. Betzel, High-amplitude cofluc-
tuations in cortical activity drive functional connectivity, Proc.
Natl. Acad. Sci. USA 117, 28393 (2020).

[58] M. L. Kringelbach and G. Deco, Brain states and transitions: In-
sights from computational neuroscience, Cell Rep. 32, 108128
(2020).

[59] G. Deco and M. L. Kringelbach, Great expectations: Us-
ing whole-brain computational connectomics for understanding
neuropsychiatric disorders, Neuron 84, 892 (2014).

[60] G. Deco, G. Tononi, M. Boly, and M. L. Kringelbach, Rethink-
ing segregation and integration: Contributions of whole-brain
modeling, Nat. Rev. Neurosci. 16, 430 (2015).

[61] M. Breakspear, Dynamic models of large-scale brain activity,
Nat. Neurosci. 20, 340 (2017).

[62] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory
(Springer, New York, NY, 1998).

[63] F. Freyer, J. A. Roberts, R. Becker, P. A. Robinson, P. Ritter,
and M. Breakspear, Biophysical mechanisms of multistability
in resting-state cortical rhythms, J. Neurosci. 31, 6353 (2011).

[64] F. Freyer, J. A. Roberts, P. Ritter, and M. Breakspear,
A canonical model of multistability and scale-invariance
in biological systems, PLoS Comput. Biol. 8, e1002634
(2012).

[65] G. Deco, J. Cabral, M. Woolrich, A. B. A. Stevner, T. Van
Hartevelt, and M. L. Kringelbach, Single or multi-frequency
generators in on-going MEG data: A mechanistic whole-
brain model of empirical MEG data, Neuroimage 152, 538
(2017).

[66] M. L. Kringelbach, J. Cruzat, J. Cabral, G. M. Knudsen, R.
L. Carhart-Harris, P. C. Whybrow, N. K. Logothetis, and G.
Deco, Dynamic coupling of whole-brain neuronal and neu-
rotransmitter systems, Proc. Natl Acad. Sci. USA 117, 9566
(2020).

[67] G. Deco, M. L. Kringelbach, V. K. Jirsa, and P. Ritter,
The dynamics of resting fluctuations in the brain: Metasta-
bility and its dynamical cortical core, Sci. Rep. 7, 3095
(2017).

[68] G. Hahn, A. Ponce-Alvarez, C. Monier, G. Benvenuti, A.
Kumar, F. Chavane, G. Deco, and Y. Fregnac, Spontaneous
cortical activity is transiently poised close to criticality, PLoS
Comput. Biol. 13, e1005543 (2017).

[69] C. Meisel, A. Klaus, V. V. Vyazovskiy, and D. Plenz, The
interplay between long- and short-range temporal correlations
shapes cortex dynamics across vigilance states, J. Neurosci. 37,
10114 (2017).

014410-14

https://doi.org/10.3389/fnins.2012.00171
https://doi.org/10.1016/j.neuron.2014.03.020
https://doi.org/10.1038/s41467-019-08934-3
http://www.fil.ion.ucl.ac.uk/spm/
https://doi.org/10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1006/nimg.1998.0361
https://doi.org/10.1016/j.neuroimage.2013.05.078
https://doi.org/10.1038/s41467-020-16734-3
https://doi.org/10.1016/j.neuroimage.2013.05.041
http://www.lead-dbs.org/
https://doi.org/10.1002/hbm.23594
http://dsistudio.labsolver.org
https://doi.org/10.1016/j.neuroimage.2015.08.048
https://doi.org/10.1038/s41467-017-01285-x
https://doi.org/10.1016/j.mri.2018.11.014
https://doi.org/10.1016/j.jcp.2023.112072
https://doi.org/10.1016/j.jcp.2023.111953
https://doi.org/10.1063/5.0094887
https://doi.org/10.1038/s41593-020-00719-y
https://doi.org/10.1162/netn_a_00182
https://doi.org/10.1073/pnas.2005531117
https://doi.org/10.1016/j.celrep.2020.108128
https://doi.org/10.1016/j.neuron.2014.08.034
https://doi.org/10.1038/nrn3963
https://doi.org/10.1038/nn.4497
https://doi.org/10.1523/JNEUROSCI.6693-10.2011
https://doi.org/10.1371/journal.pcbi.1002634
https://doi.org/10.1016/j.neuroimage.2017.03.023
https://doi.org/10.1073/pnas.1921475117
https://doi.org/10.1038/s41598-017-03073-5
https://doi.org/10.1371/journal.pcbi.1005543
https://doi.org/10.1523/JNEUROSCI.0448-17.2017

